Cmr Không tồn tại số nguyên x nào thỏa mãn 20172016+1 chia hết cho x3+5x . Mình cảm ơn mọi người rất nhìu ạ <3 <3 <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có thể xây dựng cách phân tích thừa số đơn giản như sau: \(4018=2.2009\)
Từ đó, dễ dàng thành lập được một biểu thức số có dạng \(P=20092009...200940184018...4018\) luôn chia hết cho \(2009\) \(\text{(}\) với \(x\) là số các số \(2009,\) \(y\) là số các số \(4018\) \(\text{)}\)
Khi đó, tổng các chữ số cần tìm của \(P\) là \(\left(2+0+0+9\right).x+\left(4+0+1+8\right).y=11x+13y\)
Mặt khác, do \(P\) có tổng chữ số là \(2010\) hay nói cách khác \(11x+13y=2010\) \(\left(\alpha\right)\)
Ta phải cần tìm \(x,y\in Z^+\) để thỏa mãn điều kiện phương trình \(\left(\alpha\right)\) có nghiệm
Thật vậy, nhận thấy \(x=y=0\) không là nghiệm của phương trình \(\left(\alpha\right)\)
Do đó, từ \(\left(\alpha\right),\)suy ra \(x=\frac{2010-13y}{11}=183-y-\frac{2y+3}{11}\)
Để \(x\in N\) thì \(\frac{2y+3}{11}\in N\) tức là \(2y+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Với chú ý rằng \(2y+3>3\) (do \(y>0\) ), kết hợp với điều ở trên, ta suy ra được \(2y+3=11\)
Hay \(y=8\) \(\left(\beta\right)\)
Từ \(\left(\alpha\right),\) \(\left(\beta\right)\) dễ dàng tính được \(x=178\) \(\left(\text{ t/m ĐK}\right)\)
Vậy, với \(P=20092009...200940184018...4018\) \(\text{(}\) trong đó, có \(178\) số \(2009,\) \(8\) số \(4018\) \(\text{)}\) thì thỏa mãn yêu cầu đề bài đã cho, nghĩa là có ít nhất một số tự nhiên tồn tại chia hết cho \(2009\) với tổng các chữ số là \(2010\)
CMR tồn tại 1 số tự nhiên chia hết cho 2009 có tổng các chữ số là 2010 2009
5xy-5x+y=5
(5xy-5x)+y=5
5x.(y-1)+y=5
5x.(y-1)+y-1=5-1
5x.(y-1)+(y-1)=4
(y-1).(5x+1)=4
4 chia hết 5x+1
5x+1 thuộc Ư(4)={-1;1;-2;2;-4;4}
x thuộc {-0,4;0;-0,6;0,2;-1;-0,6}
mà x là số nguyên =>x thuộc {0;-1}
=>y thuộc {2;0}
C1:5xy-5x+y=5
<=>5xy+y=5x+5
<=>y(5x+1)=5x+5
<=>y=(5x+5)/(5x+1)
<=>y=1 + 4/(5x+1)
vì y thuộc Z nên 4/(5x+1) cũng thuộc Z
=>5x +1 là ước của 4
Ư(4)={1;-1;2;-2;4;-4}
*5x +1 =1
=>x =0 (nhận) =>y=5
*5x +1 =-1
=>x = -2/5 (loại vì x thuộc Z)
*5x+1 =2
=>x= 1/5(loại vì x thuộc Z)
*5x+1 =-2
=>x= -3/5(loại vì x thuộc Z)
*5x+1 =4
=>x= 3/5(loại vì x thuộc Z)
*5x+1 = -4
=>x= -1 (nhận) =>y=0
vay nghiem cua pt tren la (-1;0) và (0;5)
C2:5xy-5x+y=5
<=>y(5x+1)=5x+5
<=>y=(5x+5)/(5x+1)=1+4/(5x+1)
y nguyên ; 1+4/(5x+1) nguyên hay (5x+1) la uoc cua 4.
=> (-1;0) (0;5)
bn chọn cách nào cx đc
60 = 3.4.5
Ta cần c/m xyz chia hết cho 3; 4 và 5.
Xét x² + y² = z²
* Giả sử cả x; y và z đều không chia hết cho 3.
Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1.
=> x² + y² ≡ 1 + 1 = 2 ( mod 3 )
Vô lí vì z² ≡ 1 ( mod 3 )
Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠)
* Giả sử cả x; y và z không chia hết cho 4.
Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3.
*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1.
=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại }
*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4
*TH 3 : Có 1 số chẵn và 2 số lẻ.
......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )}
......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau :
........z...............x...........z-...
....4m+1.......4n+1.........4(m-n).......
....4m+3.......4n+1.......4(m-n)+2.......
Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn.
Vậy.......
Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣)
* Giả sử cả x; y và z không chia hết cho 5.
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1.
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại }
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại }
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại }
Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦)
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )
Đây là toán lớp 9 mà bạn, bạn ghi đề bài lên google là ra ngay, mik vừa thử rồi
a: 7A-2B
\(=7\cdot\left(5x+2y\right)-2\left(9x+7y\right)\)
\(=35x+14y-18x-14y=17x\)
b: \(7\left(5x+2y\right)+2\left(9x+7y\right)=17y⋮17\)
mà \(5x+2y⋮17\)
nên \(2\left(9x+7y\right)⋮17\)
=>\(9x+7y⋮17\)
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
a)
b)Từ \(xyz=1\Rightarrow x=\frac{1}{zy};y=\frac{1}{xz};z=\frac{1}{xy}\)
\(M=\frac{z^2y^2}{x\left(z+y\right)}+\frac{x^2z^2}{y\left(x+z\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)
\(\ge\frac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\frac{xy+yz+xz}{2}\)(Bđt Cauchy-Schwarz)
\(\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)(Bđt Cosi)
Dấu = khi \(x=y=z=1\)
a) Gọi 5 số là: \(a_0,a_1,a_2,a_3,a_4\)
Lấy \(T_0=a_0\)
\(T_1=a_0+a_1\)
\(T_2=a_0+a_1+a_2\)
\(T_3=a_0+a_1+a_2+a_3\)
\(T_4=a_0+a_1+a_2+a_3+a_4\)
Trong 5 số: \(T_0,T_1,T_2,T_3,T_4\) có 2 trường hợp sau xảy ra:
TH1: Tồn tại 1 số \(T_i\) chia hết cho 5 => Điều phải chứng minh
TH2: Không có số nào chia hết cho 5 => Trong 5 số đó có 2 số khi chia cho 5 có cùng một số dư (theo nguyên lí Direchlet, vì 5 số đều không chia hết cho 5 nên khi chia cho 5 sẽ cho 4 số dư là {1, 2, 3,4}). Giả sử \(T_i\) và \(T_j\)(với i < j) chia cho 5 có cùng số dư => Hiệu \(T_j-T_i\) chia hết cho 5. Mà hiệu \(T_j-T_i=a_{i+1}+a_{i+2}+...+a_j\) chia hết cho 5 => Điều phải chứng minh.