cho tam giác abc vuông tại a đường cao ah kẻ hd vuông góc ab he vuông góc ac d thuộc ab e thuộc ac
chứng minh c= góc ade
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D
a) Xét ABD và EBD có
BD cạnh chung
BAD=BED(=90)
ABD=EBD(vì BD là tia phân giác của B)
b ko biet
b)Vì theo ý a) BAD=BED và BD là tia phân giác của B. Nên ADE là tam giác cân
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>\(\widehat{ADE}=\widehat{AHE}\)
mà \(\widehat{AHE}=\widehat{C}\left(=90^0-\widehat{HAC}\right)\)
nên \(\widehat{ADE}=\widehat{C}\)
Xét tứ giác ` AEHD` có:
\(\widehat{DAE}=\widehat{AEH}=\widehat{HDA}=90^o\)
=> Tứ giách `AEHD` là hình chữ nhật
=> `AH = DE`
Gọi `O` là giao điểm của` AH` và `DE`
=> `O` là trung điểm của `AH` và `DE`
=> \(\left\{{}\begin{matrix}OA=\dfrac{1}{2}AH\\OD=\dfrac{1}{2}DE\end{matrix}\right.\)
Mà `AH = DE` (Chứng minh trên)
=> `OA = OD`
Xét `ΔOAD` có: `OA = OD`
=> `ΔOAD` cân tại `O`
=> \(\widehat{ODA}=\widehat{OAD}\)
Ta có: \(\widehat{C}=\widehat{DAO}\) (cùng phụ với \(\widehat{HAC}\))
=> \(\widehat{C}=\widehat{ADO}\)
Hay \(\widehat{C}=\widehat{ADE}\) `(ĐPCM)`