K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2024

7\(x\).2 hay 7\(x^2\) vậy em?

2 tháng 8 2024

7x^2 ạ

 

13 tháng 12 2016

A=x^4+6x^3+7x^3-6x+1=x^4+6(x^3-2x^2)+(9x^2-6x+1)=x^4+2x^2(3x-1)+(3x-1)^2=(x^2+3x-1)^2

15 tháng 2 2022

\(2xy+x-2y=4\\ \Rightarrow x\left(2y+1\right)-2y-1=4-1\\ \Rightarrow x\left(2y+1\right)-\left(2y+1\right)=3\\ \Rightarrow\left(x-1\right)\left(2y+1\right)=3\)

Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,2y+1\in Z\\x-1,2y+1\inƯ\left(3\right)\end{matrix}\right.\)

Ta có bảng:

x-1-1-313
2y+1-3-131
x0-224
y-2-110

Vậy \(\left(x,y\right)\in\left\{\left(0;-2\right);\left(-2;-1\right);\left(2;1\right);\left(4;0\right)\right\}\)

 

20 tháng 7 2018

Nếu n là số lẻ thì số lẻ nhân với một số lẻ được tích cũng là số lẻ => 3n là một số lẻ

Mà một số chẵn cộng với một số lẻ được tổng là một số lẻ => 3n + 2 là một số nguyên lẻ nếu n lẻ

20 tháng 7 2018

3n + 2  là số nguyên lẻ  <=> 3n là số nguyên lẻ . ( vì 2 là số nguyên chẵn ) .

                                      <=> n là số nguyên lẻ .

Ngược lại : n là số nguyên lẻ 

           => 3n là số nguyên lẻ .

           => 3n + 2 là số nguyên lẻ . ( vì 2 là số nguyên chẵn )

Do đó bài toán được chứng minh .

7 tháng 9 2016

Do p nguyên tố nên:

+) Xét p = 2 ta có: p2 + 8 = 22 + 8 = 12 là hợp số (loại)

+) Xêt p = 3 ta có: p2 + 8 = 32 + 8 = 17 là nguyên tố (chọn)

+) Xét p > 3  => p = 3k + 1  hoặc  p = 3k + 2

Khi p = 3k + 1  => p2 + 8 = (3k + 1)2 + 8 = 9k2 + 3k + 1 + 8 = 9k2 + 3k + 9 = 3(3k2 + k + 3) chia hết cho 3  => p2 + 8 là hợp số (loại) 

Khi p = 3k + 2  => p2 + 8 = (3k + 2)2 + 8 = 9k2 + 6k + 4 + 8 = 9k2 + 6k + 12 = 3(3k2 + 2k + 4) chia hết cho 3  => p2 + 8 là hợp số (loại) 

=> p = 3 để p và p2 + 8 là nguyên tố 

Khi đó: p2 + 2 = 32 + 2 = 11 là nguyên tố

Vậy nếu p và p2 + 8 là nguyên tố thì p2 + 2 cũng nguyên tố.