K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2024

\(a.A=5xy^2+xy-3xy^2-x^2y+2xy+x^2y-2xy^2+xy+4\\ =\left(5xy^2-3xy^2-2xy^2\right)+\left(xy+2xy+xy\right)+\left(-x^2y+x^2y\right)+4\\ =4xy+4\)

Bậc của A là: 2 

b. Thay `x=2;y=1` vào A ta có:  

\(A=4\cdot2\cdot1+4=12\) 

\(c.A+B=-2xy+1\\ =>B=-2xy+1-A\\ =>B=\left(-2xy+1\right)-\left(4xy+4\right)\\ =-2xy+1-4xy-4\\ =-6xy-3\)

31 tháng 7 2024

`A = 5x y^2 + xy - 3xy^2 - x^2 y + 2xy + x^2 y - 2xy^2 + xy + 4`

`= (5x y^2  - 3xy^2 - 2xy^2) + (x^2 y - x^2 y) + (2xy + xy + xy) + 4`

`= 0 + 0 + 4xy + 4`

`= 4xy + 4`

Bậc: 2

b) Thay `x = 2; y = 1` vào `A` ta được: 

`A = 4 . 2 . 1 + 4 = 8 + 4 = 12`

c) Ta có: `A + B = -2xy + 1`

`=> B =  -2xy + 1 - A`

`=> B =  -2xy + 1 - (4xy + 4)`

`=> B =  -2xy + 1 - 4xy - 4`

`=> B =  -6xy - 3`

Vậy ....

 

9 tháng 11 2023

\(a,A=2x^3y-3xy^2+5x^3y-xy^2+2\\=(2x^3y+5x^3y)+(-3xy^2-xy^2)+2\\=7x^3y-4xy^2+2\)

Bậc của đa thức A: 3 + 1 = 4.

\(b,\) Thay \(x=1;y=-1\) vào \(A\), ta được:

\(A=7\cdot1^3\cdot\left(-1\right)-4\cdot1\cdot\left(-1\right)^2+2\)

\(=-7-4+2=-9\)

11 tháng 3 2022

\(a)P=3,5.x^2y-3.x.y^2+1,5.x^2.y+2.x.y+3.x.y^2\)

\(P=5.x^2.y+2.x.y\)

\(b)\text{Thay x=1;y=2 vào biểu thức P,ta được:}\)

\(5.1^2.2+2.1.2\)

\(=5.1.2+2.1.2\)

\(=10+4=14\)

\(\text{Vậy giá trị của biểu thức P tại x=1;y=2 là:14}\)

11 tháng 3 2022

a.\(P=3,5x^2y-3xy^2+1,5x^2y+2xy+3xy^2\)

\(P=5x^2y+2xy\)

b. Thế x=1; y=2 vào P, ta được:

\(5.1^2.2+2.1.2=10+4=14\)

 

5 tháng 3 2022

a) (5x3 + 7x2y4 + 18y2) + (2x3 - 5x2y4 - 12y2)

= 5x3 + 7x2y4 + 18y2 + 2x3 - 5x2y4 - 12y2

= 7x3 + 2x2y4 + 6y2

Bậc của đa thức là 6

Thay x = 1; y = -1 vào ta có:

7 x 13 + 2 x 12 x (-1)4 + 6 x (-1)4 = 7 x 1 + 2 x 1 x 1 + 6 x 1 = 7 + 2 + 6 = 15

b) \(\left(15x^3y-9x^2y^5+2y^4\right)-\left(18x^3y-6y^4-3x^2y^5\right)\)

\(=15x^3y-9x^2y^5+2y^4-18x^3y+6y^4+3x^2y^5\)

\(=-3x^3y-6x^2y^5+8y^4\)

Bậc của đa thức là 7

Thay x = 1; y = -1 vào ta có:

(-3) x 13 x (-1) - 6 x 12 x (-1)5 + 8 x (-1)4 = (-3) x (-1) - 6 x 1 x (-1) + 8 x 1 = 3 + 6 + 8 = 17

6 tháng 3 2022

`Answer:`

undefined

undefined

undefined

NM
2 tháng 8 2021

ta có :

\(M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3=-2x^4y^3+7xy^2\)

Bậc của M là \(4+3=7\)

tại x=1 và y=-1 ta có \(M=-2.1^4.\left(-1\right)^3+7.1.\left(-1\right)^2=2+7=9\)

11 tháng 4 2022

\(P(x) = 2x^2 +x-x^2+x+1=x^2+2x+1\)

Khi \(x=1\) ⇔ \(P(1)=1^2+2.1+1=4\)

20 tháng 8 2021

chỗ b x = -1/2

18 tháng 4 2022

chịuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

3 tháng 5 2023

\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)

Bậc của đa thức \(3\)

Hệ số cao nhất là \(1\)

\(b,B\left(x\right)=A\left(x\right).\left(x-1\right)=\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-x-10x+10\\ =x^4-x^3+x^2-11x+10\)

Thay \(x=2\) vào \(B\left(x\right)\)

\(=2^4-2^3+2^2-11.2+10\\ =0\) 

Vậy tại \(x=2\) thì \(B\left(x\right)=0\)

15 tháng 5 2022

`a)`

`M=2xy+9xy^2-2xy-7xy^2-3`

`M=(2xy-2xy)+(9xy^2-7xy^2)-3`

`M=2xy^2-3`

___________________________________

`b)` Thay `x=-1;y=2` vào `M`. Ta có:

 `M=2.(-1).2^2-3`

 `M=-2.4-3=-8-3=-11`