K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2021

rorry mình lười giải

8 tháng 11 2018

a, \(\Delta ABC\)có: 

 \(AB^2+AC^2=5^2+12^2=169=13^2=BC^2\)

\(\Rightarrow\Delta ABC\)vuông tại A có AM là đường trung tuyến AM ứng với cạnh huyền BC 

\(\Rightarrow AM=\frac{1}{2}BC=\frac{1}{2}.13=6,5\left(cm\right)\)

b, \(\Delta ABC\)có MD là đường trung bình \(\Rightarrow MD//AB\Rightarrow MD\perp AC\left(AB\perp AC\right)\Rightarrow\widehat{ADM}=90^0\)

Tương tự \(\widehat{AEM}=90^0\)

\(\widehat{BAC}=90^0\Rightarrow\widehat{DAE}=90^0\)

Tứ giác AEMD có \(\widehat{DAE}=\widehat{ADM}=\widehat{AEM}=90^0\)

Do đó: AEMD là hình chữ nhật.

8 tháng 11 2018

A B C E D 5 12 M 13

a) Ta có : AB2 + AC2 = 52 + 122 = 169 = 132 = BC2

=> tam giác ABC vuông tại A ( định lý Pytago đảo )

=> AM là đường trung tuyến ứng với cạnh huyền BC

=> BM = MC = AM = 13/2 = 6,5 ( cm )

Vậy AM = 6,5 cm

b) Xét tam giác ABM có BM = AM ( chứng minh trên )

=> tam giác ABM cân tại M

Xét tam giác ABM cân tại M có DM là đường trung tuyến

=> DM đồng thời là đường cao 

=> DM ⊥ AB

=> góc ADM = 900

Chứng minh tương tự ta có ME là đường cao trong tam giác cân AMN

=> góc MEA = 900

Xét tứ giác AEMD có góc ADM = góc DAE = góc MEA = 900

=> tứ giác AEMD là hình chữ nhật 

8 tháng 8 2023

a) Ta có: \(BC=13cm\Rightarrow BC^2=13^2cm=169cm\)

Xét: \(AB^2+AC^2=5^2+12^2=25+144=169=13^2=BC^2\)

Vậy tam giác ABC vuông tại A có cạnh huyền BC

b) Áp dụng định lý thích hai cạnh góc vuông tà tích giữa cạnh huyền và đường cao ta có:

\(AH\cdot BC=AB\cdot AC\)

\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot5}{13}\approx4,6\left(cm\right)\)

c) Xét ΔAHB vuông tại H có đường cao HE ta có:  

\(\Rightarrow AH^2=AE\cdot AB\) (1)

Xét ΔAHC vuông tại H có đường cao HF ta có:

\(\Rightarrow AH^2=AF\cdot AC\) (2) 

Từ (1) và (2) 

\(\Rightarrow AB\cdot AE=AC\cdot AF\)

\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\) (3) 

Dựa vào (3) 

Ta suy ra: \(\Delta AEF\sim\Delta ABC\)

\(\Rightarrow\widehat{AEF}=\widehat{ABC}\) (đpcm)

a: Xét ΔÂBC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

b: AH=AB*AC/BC=60/13(cm)

c: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB

=>góc AFE=góc ABC

2 tháng 3 2022

a, Ta có:\(AB^2+AC^2=12^2+16^2=400\)(cm)

\(BC^2=20^2=400\)(cm)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A

Xét Δ DNC và Δ ABC có:

\(\widehat{NDC}=\widehat{BAC}\left(=90^o\right)\)

Chung \(\widehat{C}\)

⇒Δ DNC \(\sim\) Δ ABC (g.g)

b, Ta có: BD=DC=1/2.BC=1/2.20=10(cm)

Δ DNC \(\sim\) Δ ABC (cma)

\(\Rightarrow\dfrac{ND}{AB}=\dfrac{NC}{BC}=\dfrac{DC}{AC}\Rightarrow\dfrac{ND}{12}=\dfrac{NC}{20}=\dfrac{10}{16}\Rightarrow\left\{{}\begin{matrix}ND=7,5\left(cm\right)\\NC=12,5\left(cm\right)\end{matrix}\right.\)

c, Xét Δ DBM và Δ ABC có:

Chung \(\widehat{B}\)

\(\widehat{BDM}=\widehat{BAC}\left(=90^o\right)\)

⇒Δ DBM \(\sim\) Δ ABC(g.g)

\(\Rightarrow\dfrac{MB}{BC}=\dfrac{BD}{AB}\Rightarrow\dfrac{MB}{20}=\dfrac{10}{12}\Rightarrow MB=\dfrac{50}{3}\left(cm\right)\)

Ta có: MD⊥BC, BD=DC ⇒ ΔBDC cân tại M

\(\Rightarrow MB=MC=\dfrac{50}{3}\left(cm\right)\)

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có 

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

Suy ra: BH=HC(hai cạnh tương ứng)

29 tháng 11 2016

Áp dụng định lí pitago vào tgiac ABH vuông tại H có:

   BH^2=AB^2-AH^2=!3^2-12^2=25

=>BH=5(cm)

Áp dụng định lí pitago vào tam giác AHC vuông tại H có:

    AC^2=AH^2+HC^2=12^2+16^2=400

=> AC=20(cm)

Ta có HM=AM=MC( vì trong một tam giác vuông đường trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền)

 => HM=10(cm)

 *** cho mk nha ^^!

30 tháng 11 2016

Hình như thiếu cạnh BC bạn ạ

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/2=CD/3=(BD+CD)/(2+3)=15/5=3

=>BD=6cm và CD=9cm

Xét ΔBAD có BI là phân giác

nên AI/ID=AB/BD=2

=>AI/AD=2/3=AG/AM

=>IG//BC

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/2=CD/3=(BD+CD)/(2+3)=15/5=3

=>BD=6cm và CD=9cm

Xét ΔBAD có BI là phân giác

nên AI/ID=AB/BD=2

=>AI/AD=2/3=AG/AM

=>IG//BC