tìm GTLN của bt -x2+4x-7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{-x^2-1+x^2+4x+4}{x^2+1}=-1+\dfrac{\left(x+2\right)^2}{x^2+1}\ge-1\)
\(A_{min}=-1\) khi \(x=-2\)
\(A=\dfrac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\dfrac{\left(2x-1\right)^2}{x^2+1}\le4\)
\(A_{max}=4\) khi \(x=\dfrac{1}{2}\)
\(A=\dfrac{-x^2-1+x^2-4x+4}{x^2+1}=-1+\dfrac{\left(x-2\right)^2}{x^2+1}\ge-1\)
\(A_{min}=-1\) khi \(x=2\)
\(A=\dfrac{4x^2+4-4x^2-4x-1}{x^2+1}=4-\dfrac{\left(2x+1\right)^2}{x^2+1}\le4\)
\(A_{max}=4\) khi \(x=-\dfrac{1}{2}\)
\(x^2-4x+7\)
⇔ \(\left(x^2-4x+4\right)+3\)
⇔ \(\left(x-2\right)^2+3\)
Vì \(\left(x-2\right)^2\ge0\) ⇒ \(\left(x-2\right)^2+3\ge3\)
Vậy GTNN của A là 3 khi x =2
\(x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=2
Ta có : -x2-4x+9
=-x2-4x-4+13
=-(x2+4x+4)+13
=-(x+2)2+13
=13-(x+2)2
\(\Rightarrow\)(x+2)2\(\ge\)0
Ma: 13>0 \(\Leftrightarrow\)(x+2)2\(\le\)13
Vay GTLN la 13
Dau "=" xay ra khi : x+2=0
x=-2
-x^2-4x+9=-(x^2+4x+4-13)=-(x+2)^2+13
ta co -(x+2)^2 nho hon hoac bang 0
13 lon hon 0
nen bt tren se nho hon hoac bang 13
dau = xay ra <=> x+2=0=>x=-2
vay min bt =13 tai x=-2
\(T=-2\left(x^2+y^2+1-2xy+2x-2y\right)-2y^2+8y+2004\)
\(T=-2\left(x-y+1\right)^2-2\left(y-2\right)^2+2012\le2012\)
\(T_{max}=2012\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Ta có: -x2+4x-7 = -(x2-4x+7)
= - (x2-2.x.2+22)+3
= -(x-2)2+3
= 3-(x-2)2
Vì (x-2)2 >= 0 => 3-(x-2)2 >= 3
Dấu "=" xảy ra khi x-2 = 0 => x = 2
Vậy Max của biểu thức = 3 khi x = 2
= -(x^2-4x+4)-3
= -(x-2)^2-3
Vì -(x-2)^2\(\le0\forall x\)
-> -(x-2)^2-3 \(\le-3\forall x\)
Dấu = xảy ra <=> x-2=0<=>x=2
Vậy GTLN là -3 <=> x=2