Chứng minh (a-b)x(b-c)x(c-d)x(a-d) chia hết cho 12 ( a,b,c,d.là số tư nhiên)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
Cái này mà toán lớp 4 à?
nếu các bn thấy đúng thì tik cho mình nhé
Câu 1
A = ab - ba
= (10a + b) - (10b + a)
= 10a + b - 10b -a
= 9a - 9b
= 9(a-b) : hết cho 9
Vậy...
các bn giải giúp mình bài này đi mình đang cần rất gấp giải hết 4 bài lun nha
(a+b+c)3= (a+b)3+3(a+b)2c+3(a+b)c2+c2
=a3+3a2b+3ab2+b2+3(a+b)c(a+b+c)+c2
=a3+b3+c3+3ab(a+b)+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)[ab+c(a+b+c)]
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)[(ab+ac)+(bc+c2)]
=a3+b3+c3+3(a+b)[a(b+c)+c(b+c)]
=a3+b3+c3+3(a+b)(b+c)(c+a)
Vậy (a+b+c)3 = a3 + b3 + c3 + 3(a+b)(b+c)(c+a)
a) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)
Nên \(10^{10}-1\) ⋮ 9
b) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)
Mà: \(1+0+0+...+2=3\) ⋮ 3
Nên: \(10^{10}+2\) ⋮ 3