cho tam giác vuông cân ABC. Trên cạnh huyền BC lấy các điểm M và N sao cho M nằm giữa B và N, dồng thời góc MAN=45 độ. CMR ba đoan BM,MN,NC là 3 cạnh của 1 tam giác vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔMAB vuông tại M
=>\(\widehat{MAB}+\widehat{MBA}=90^0\)
\(\widehat{BAM}+\widehat{BAC}+\widehat{CAN}=180^0\)
=>\(\widehat{BAM}+\widehat{CAN}=180^0-90^0=90^0\)
mà \(\widehat{BAM}+\widehat{MBA}=90^0\)
nên \(\widehat{CAN}=\widehat{MBA}\)
Xét ΔMBA vuông tại M và ΔNAC vuông tại N có
BA=AC
\(\widehat{MBA}=\widehat{NAC}\)
Do đó: ΔMBA=ΔNAC
=>MB=NA
Để A là trung điểm của MN thì AM=AN
mà MB=NA
nên AM=NA=MB
=>MA=MB
=>\(\widehat{MAB}=\widehat{MBA}=45^0\)
=>xy tạo với đường thẳng AB một góc 45 độ thì A là trung điểm của MN
Nếu nắm bắt được lí thuyết thì giải ra dễ lắm bạn à:
Vì MN song song với BC => tứ giác MNCB là hình thang rồi còn gì nữa, còn nếu muốn CM hình thang cân thì kẻ thêm 2 đường chéo BN, CM
a: Xét ΔBEM vuông tại M có \(\widehat{B}=45^0\)
nên ΔBEM vuông cân tại M
b: ME\(\perp\)BC
NF\(\perp\)BC
Do đó: ME//NF
Xét ΔCNF vuông tại N có \(\widehat{NCF}=45^0\)
nên ΔCNF vuông cân tại N
=>CN=NF
CN=NF
BM=ME
CN=NM=MB
Do đó: CN=NF=BM=ME=NM
Xét tứ giác NMEF có
NF//ME
NF=ME
Do đó: NMEF là hình bình hành
Hình bình hành NMEF có NM=NF
nên NMEF là hình thoi
Hình thoi NMEF có \(\widehat{FNM}=90^0\)
nên NMEF là hình vuông
a, xét tam giác ABK và tam giác IBK có : BK chung
góc CAB = góc KIB = 90 do....
góc IBK = góc KBA do BK là phân giác của góc ABC (gt)
=> tam giác ABK = tam giác IBK (ch - gn)
b, tam giác ABK = tam giác IBK (câu a)
=> KI = KA (đn)
xét tam giác KIC và tam giác KAH có : góc IKC = góc AKH (đối đỉnh)
góc KAH = góc KIC = 90 do...
=> tam giác KIC = tam giác KAH (cgv - nhk)
=> CI = HA (đn) và IB = AB do tam giác ABK = tam giác IBK (câu a)
=> CI + IB = HA + AB
=> CB = HB
=> tam giác CHB cân tại B (đn)
c, xét tam giác BHM và tam giác BCM có : MB chung
CB = HB (câu b)
góc HMB = góc CMB = 90 do BM _|_ HC (gt)
=> tam giác BHM = tam giác BCM (ch - cgv)
=> góc CBM = góc HBM (đn) mà tia BM nằm giữa BC và BH
=> BM là phân giác của góc ABC (đn)
BK là phân giác của hóc ABC (gt)
=> 3 điểm B; M; K thẳng hàng
d, góc B = 60 (em đoán vậy thôi :v)
Giải
a, Xét \(\Delta ABK\) và \(\Delta IBK\) có BK chung
\(\Rightarrow\widehat{CAB}=\widehat{KIB}=90^0\)
\(\Rightarrow\widehat{IBK}=\widehat{KBA}\)do BK là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\Delta ABK=\Delta IBK\)
b, \(\Rightarrow\Delta ABK=\Delta IBK\Leftrightarrow KI=KA\)
Xét \(\Delta KIC\) và \(\Delta KAH\) có \(\widehat{IKC}=\widehat{AKH}\) ( đối đỉnh )
góc KAH = góc KIC = 900
=> tam giác KIC = tam giác KAH (cgv - nhk)
=> CI = HA (đn) và IB = AB do tam giác ABK = tam giác IBK (câu a)
=> CI + IB = HA + AB
=> CB = HB
=> tam giác CHB cân tại B (đn)
c, xét tam giác BHM và tam giác BCM có : MB chung
=> CB = HB
góc HMB = góc CMB = 90 do BM _|_ HC
=> tam giác BHM = tam giác BCM
=> góc CBM = góc HBM (đn) mà tia BM nằm giữa BC và BH
=> BM là phân giác của góc ABC
BK là phân giác của hóc ABC
=> 3 điểm B; M; K thẳng hàng
d, góc B = 60