K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(\dfrac{AC}{15}=\dfrac{3}{5}\)

=>\(AC=15\cdot\dfrac{3}{5}=9\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB=\sqrt{15^2-9^2}=12\left(cm\right)\)

26 tháng 7

Tam giác `ABC` vuông tại `A`

`=> AC =  BC . sinB = 15 . 3/5 = 9 (cm)`

Và `AB =` \(\sqrt{BC^2-AC^2}=\sqrt{15^2-9^2}=\sqrt{144}=12\) `(cm)`

6 tháng 2 2019

HS tự làm

29 tháng 4 2020

Mình làm mẫu cho bạn câu a) nhé 

a) Theo định lí Pytago ta có :

BC2 = AB2 + AC2 

152 = AB2 + AC2

AB : AC = 3:4

=> \(\frac{AB}{3}=\frac{AC}{4}\)=> \(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}\)và AB2 + AC2 = 152

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{15^2}{25}=\frac{225}{25}=9\)

\(\frac{AB^2}{3^2}=9\Rightarrow AB^2=81\Rightarrow AB=\sqrt{81}=9cm\)

\(\frac{AC^2}{4^2}=9\Rightarrow AC^2=144\Rightarrow AC=\sqrt{144}=12cm\)

Ý b) tương tự nhé 

10 tháng 2 2022

thank you

 

1: AC=20cm

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)

2: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

3: Xét tứ giác AFDH có

AF//DH

AF=DH

Do đó: AFDH là hình bình hành

sin B=4/5

=>AH/AB=4/5

=>8/AB=4/5

=>AB=10cm

HB=căn 10^2-8^2=6cm

=>BC=10^2/6=50/3(cm)

S ABC=1/2*8*50/3=4*50/3=200/3cm2

1 tháng 1 2022

Ta có:

\(AB=2AC\\ \Rightarrow AB^2=\left(2AC\right)^2=4AC^2\)

Áp dụng định lí Pythagoras vào tam giác ABC vuông tại A, ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow4AC^2+AC^2=15^2\)

\(\Rightarrow5AC^2=225\)

\(\Rightarrow AC^2=225:5=45\\ \Rightarrow AC=\sqrt{45}\left(cm\right)\)

\(\Rightarrow AB=2.AC=2.\sqrt{45}=\sqrt{180}\left(cm\right)\)

 

 

 

13 tháng 6 2021

a) Xét ΔAHB và ΔCAB có

Góc B chung

Góc AHB= Góc A=90o

=>  ΔAHB ∼ ΔCAB (gg)

 

 

13 tháng 6 2021

B, C đâu bạn

a: Xét ΔACI vuông tại C và ΔBHI vuông tại H có

\(\widehat{AIC}=\widehat{BIH}\)(hai góc đối đỉnh)

Do đó: ΔACI~ΔBHI

b: Ta có: ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=25^2-15^2=400\)

=>\(CB=\sqrt{400}=20\left(cm\right)\)

Xét ΔABC có AI là phân giác

nên \(\dfrac{CI}{CA}=\dfrac{BI}{BA}\)

=>\(\dfrac{CI}{15}=\dfrac{BI}{25}\)

=>\(\dfrac{CI}{3}=\dfrac{BI}{5}\)

mà CI+BI=CB=20cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{CI}{3}=\dfrac{BI}{5}=\dfrac{CI+BI}{3+5}=\dfrac{20}{8}=2,5\)

=>\(CI=2,5\cdot3=7,5\left(cm\right)\)

c: Ta có: ΔACI~ΔBHI

=>\(\widehat{CAI}=\widehat{HBI}\)

mà \(\widehat{CAI}=\widehat{BAH}\)

nên \(\widehat{HBI}=\widehat{HAB}\)

Xét ΔHBI vuông tại H và ΔHAB vuông tại H có

\(\widehat{HBI}=\widehat{HAB}\)

Do đó: ΔHBI~ΔHAB

=>\(\dfrac{HB}{HA}=\dfrac{HI}{HB}\)

=>\(HB^2=HI\cdot HA\)

25 tháng 10 2016

a) Ta có 252=152+202 hay BC2=AB2+AC2

=> ▲ABC vuông tại A

b) Xét ▲ABC vuông tại A có
SinB = \(\frac{AC}{BC}=\frac{20}{25}=\frac{4}{5}\)
TanC = \(\frac{AB}{AC}=\frac{15}{20}=\frac{3}{4}\)
=> SinB + TanC = \(\frac{4}{5}+\frac{3}{4}=\frac{31}{20}\)

c) I là trung điểm AC => AI = 10cm.
=> BI2 = 102+152= 325 => BI = \(5\sqrt{13}\)
Xét ▲ABI có TanI = \(\frac{3}{2}\)=> góc BIA = 56'18'

=> BIC = 180 - 56'18' = 123 độ 41 phút.

 

25 tháng 10 2016

cám ơn pn nhìu

Kẻ AH\(\perp\)BC tại H

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=25^2-15^2=400\)

hay AC=20(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=9\left(cm\right)\\CH=16\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)