x\(x^2+16y^2+3x+6y+5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-448y^3=-3x+6y\\96=385x^2-16y^2\end{matrix}\right.\)
\(\Rightarrow96\left(x^3-448y^3\right)=\left(-3x+6y\right)\left(385x^2-16y^2\right)\)
\(\Leftrightarrow\left(x-4y\right)\left(417x^2+898xy+3576y^2\right)=0\)
\(\Leftrightarrow x-4y=0\)
\(\Leftrightarrow x=4y\)
Thế vào \(385x^2-16y^2=96\)
\(\Rightarrow...\)
b.
ĐKXĐ: \(x+y\ne0\)
\(\left\{{}\begin{matrix}\left(3x^3-y^3\right)\left(x+y\right)=1\\1=x^2+y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x^3-y^3\right)\left(x+y\right)=1\\1=\left(x^2+y^2\right)^2\end{matrix}\right.\)
\(\Rightarrow\left(3x^3-y^3\right)\left(x+y\right)=\left(x^2+y^2\right)^2\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)\left(2x^2+xy+y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)
Thế vào \(x^2+y^2=1\)...
2.
Ta cần tìm \(cosABC=\dfrac{AB^2+BC^2-AC^2}{2AB.BC}=\dfrac{3\left(AB^2+BC^2-AC^2\right)}{2AC^2}\)
Gọi H, K là trung điểm của AB, BC.
Theo giả thiết \(\overrightarrow{OM}\perp\overrightarrow{BI}\)
\(\Rightarrow\overrightarrow{OM}.\overrightarrow{BI}=0\)
\(\Leftrightarrow\left(2\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OC}\right)\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=0\)
\(\Leftrightarrow\left(2\overrightarrow{OB}+2\overrightarrow{BA}+\overrightarrow{OB}+2\overrightarrow{OB}+2\overrightarrow{BC}\right)\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=0\)
\(\Leftrightarrow\left(5\overrightarrow{OB}+2\overrightarrow{BA}+2\overrightarrow{BC}\right)\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=0\)
\(\Leftrightarrow2\left(\overrightarrow{BA}+\overrightarrow{BC}\right)^2+5\overrightarrow{OB}.\overrightarrow{BA}+5\overrightarrow{OB}.\overrightarrow{BC}=0\)
\(\Leftrightarrow2\left(\overrightarrow{BA}+\overrightarrow{BC}\right)^2+5\left(\overrightarrow{OH}+\overrightarrow{HB}\right).\overrightarrow{BA}+5\left(\overrightarrow{OK}+\overrightarrow{KB}\right).\overrightarrow{BC}=0\)
\(\Leftrightarrow2\left(\overrightarrow{BA}+\overrightarrow{BC}\right)^2+5\overrightarrow{OH}.\overrightarrow{BA}+5\overrightarrow{HB}.\overrightarrow{BA}+5\overrightarrow{OK}.\overrightarrow{BC}+5\overrightarrow{KB}.\overrightarrow{BC}=0\)
\(\Leftrightarrow2\left(\overrightarrow{BA}+\overrightarrow{BC}\right)^2+0+\dfrac{5}{2}\overrightarrow{AB}.\overrightarrow{BA}+0+\dfrac{5}{2}\overrightarrow{CB}.\overrightarrow{BC}=0\) (Vì \(OH\perp AB,OK\perp BC\))
\(\Leftrightarrow-\dfrac{1}{2}\left(AB^2+BC^2\right)+4\overrightarrow{BA}.\overrightarrow{BC}=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(AB^2+BC^2\right)=2\left(AB^2+BC^2-AC^2\right)\)
\(\Leftrightarrow AB^2+BC^2=\dfrac{4}{3}AC^2\)
Khi đó \(cosABC=\dfrac{3\left(\dfrac{4}{3}AC^2-AC^2\right)}{2AC^2}=\dfrac{1}{2}\Rightarrow\widehat{ABC}=60^o\)
B)(5-3x)^2=25+9x^2-30x
c)(5-x^2)(5+x^2)=25-x^4
d)(5x-1)^3=125x^3-1+15x-75x^2
e)(x^2+3)(x^4+9-3x^2)=x^6+27
f)( x-4y)(x^2+4 xy+16 y^2)= x^3-64 y^3
3, \(C=x^2-8xy+16y^2\)
\(C=x^2-2\cdot4y\cdot x+\left(4y\right)^2\)
\(C=\left(x-4y\right)^2\)
Thay \(x-4y=5\) vào C ta được:
\(C=5^2=25\)
Vậy: ......
4, \(D=9x^2+1620-12xy+4y^2\)
\(D=\left(9x^2-12xy+4y^2\right)+1620\)
\(D=\left[\left(3x\right)^2-2\cdot3x\cdot2y+\left(2y\right)^2\right]+1620\)
\(D=\left(3x-2y\right)^2+1620\)
Thay \(3x-2y=20\) vào D ta được:
\(D=20^2+1620=400+1620=2020\)
Vậy: ...
3/
\(C=x^2-8xy+16y^2=x^2-2.4.xy+\left(4y\right)^2=\left(x-4y\right)^2\)
Thay x - 4y = 5 ta có: \(C=5^2=25\)
4/
\(D=9x^2-12xy+4y^2+1620\\ =\left(3x\right)^2-3.2.2xy+\left(2y\right)^2+1620\\ =\left(3x-2y\right)^2+1620\)
Thay 3x - 2y = 20. Ta có: \(D=20^2+1620=400+1620=2020\)
đây đâu phải văn