ai giải giúp mik với
so sánh 2n+1 và 3n+1
mik cảm ơn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :3n chia hết cho n - 1
<=> 3n - 3 + 3 chia hết cho n - 1
<=> 3.(n - 1) + 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng :
n - 1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
Ta có : 8 : n - 2
<=> n - 2 thuộc Ư(8) = {-8;-4;-2;-1;1;2;4;8}
Ta có bảng :
n - 2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
n | -6 | -2 | 0 | 1 | 3 | 4 | 6 | 20 |
nhầm chính tả rồi, nắp không phải lắp
1m = 10dm; 50cm = 5dm; 40cm = 4dm
DT làm bể là:
(10 + 5) x 2 x 4 + 10 x 5 = 170dm2
Đ/s:..
1 bỏ so
-In order to V(inf): Để làm gì
3 -So as to V(inf): Để làm gì
6 me->her
-Could/can/Will+V(inf)
-Help+O+V/to V
11 ..... me where the nearest post office is?
-Can/could+S+V+wh-questions+S+V?
14 -Shall+S+V(inf)?
17 ........ going to help him revise his lessons
-"be" going to V(inf): Sẽ làm gì( mang tính chắc chắn)
18 -Would+S+love/like+to V/N?
19 -Let's+V(inf)
= Shall+we+V(inf)?
20 -Trong ngữ cảnh này "to V" được dùng với nghĩa "để làm gì"
*Inf: Infinitive
a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\), \(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)
Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)
Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0
b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)
\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3
Đặt n=3k+1 và n=3k+2. Tự thế vài và CM
c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)
\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Dễ thấy đẳng thức trên chia hết cho 5
Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)
Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)
Và tích của hai số bất kì cũng chia hết cho 2
Vậy đẳng thức trên chia hết cho 3.4.2.5=120
Cậu cuối bn chứng minh cách tương tự. :)
\(A^{2n+1}+B^{2n+1}=\left(A+B\right)\left(A^{2n}-A^{2n-1}B+A^{2n-1}B^2-...+A^2B^{2n-2}-AB^{2n-1}+B^{2n}\right)\\ \)
Chia hết cho A + B.
2n+1 và 3n+1
ta có 2.n và 3.n
vì 2.n < 3.n
=> 2n+1 > 3n+1
Với n bằng 0 suy ra 2n+1 bằng 3n+1
Với n > 0 suy ra 2n+1 < 3n+1.