K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

Chia hết cho 79 nhé.

17 tháng 11 2023

ta có :

918=93.6=(93)6=276

vì 12>6

=> 2712>276

=>2712>918

15 tháng 10 2021

b) Để 4x + 19 chia hết cho x + 1 thì 15 chia hết cho x + 1

--> x + 1 là ước của 15

TH1: x + 1 = 15 <=> x = 14

TH2: x + 1 = 1 <=> x = 0

TH3: x + 1 = 3 <=> x = 2

TH4: x + 1 = 5 <=> x= 4

5 tháng 7 2015

Bài 1 :

\(3^{22}-9^{10}-27^6=3^{22}-\left(3^2\right)^{10}-\left(3^3\right)^6=3^{22}-3^{20}-3^{18}=3^{18}.\left(3^4-3^2-1\right)=3^{18}.71\)chia hết cho 71 (đpcm).

12 tháng 12 2019
Nvffghhcg dêooooo
6 tháng 11 2015

Ta co :

A=2536 -571+570

A=(52)36-571+570

A=572-571+570

A=570.52-570.51+570.5

A=570(52-51+5)

A=570.25

Vay 570.25 chia het cho 130

dug 100%

8 tháng 8 2023

b) \(A=1+5+5^1+5^2+5^3+...+5^{71}\)

\(\Rightarrow A=\left(1+5^1+5^2\right)+5^3\left(1+5^1+5^2\right)+...+5^{69}\left(1+5^1+5^2\right)\)

\(\Rightarrow A=31+5^3.31+...+5^{69}.31\)

\(\Rightarrow A=31\left(1+5^3+...+5^{69}\right)⋮31\left(dpcm\right)\)

8 tháng 8 2023

a) \(A=1+5^1+5^2+5^3+...+5^{71}\)

\(\Rightarrow A=\dfrac{5^{71+1}-1}{5-1}=\dfrac{5^{72}-1}{4}\)

\(4A+x=5^{72}\)

\(\Rightarrow4.\dfrac{5^{72}-1}{4}+x=5^{72}\)

\(\Rightarrow5^{72}-1+x=5^{72}\)

\(\Rightarrow x=1\)

12 tháng 12 2021

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

12 tháng 12 2021

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)