Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+3+5+...+(2x+1)=441
Số số hạng là \(\dfrac{2x+1-1}{2}+1=\dfrac{2x}{2}+1=x+1\left(số\right)\)
Tổng của dãy số là \(\left(2x+1+1\right)\cdot\dfrac{\left(x+1\right)}{2}=\left(x+1\right)^2\)
Do đó, ta có phương trình:
\(\left(x+1\right)^2=441\)
=>\(\left(x+1\right)^2-21^2=0\)
=>(x+1+21)(x+1-21)=0
=>(x+22)(x-20)=0
=>\(\left[{}\begin{matrix}x=-22\\x=20\end{matrix}\right.\)
Tổng: 1 + 3 + 5 + ... + (2x + 1)
Số lượng số hạng là:
(2x + 1 - 1) : 2 + 1 = x + 1 (số hạng)
=> 1 + 3 + 5 + ... + (2x + 1) = (2x + 1 + 1) x (x + 1) : 2 = `(x+1)^2`
=> \(\left(x+1\right)^2=441\)
\(=>\left(x+1\right)^2=21^2\\ TH1:x+1=21\\ =>x=21-1\\ =>x=20\\ TH2:x+1=-21\\ =>x=-21-1\\ =>x=-20\)
Mà: x > 0 => x = 20
1+3+5+...+(2x+1)=441
Số số hạng là \(\dfrac{2x+1-1}{2}+1=\dfrac{2x}{2}+1=x+1\left(số\right)\)
Tổng của dãy số là \(\left(2x+1+1\right)\cdot\dfrac{\left(x+1\right)}{2}=\left(x+1\right)^2\)
Do đó, ta có phương trình:
\(\left(x+1\right)^2=441\)
=>\(\left(x+1\right)^2-21^2=0\)
=>(x+1+21)(x+1-21)=0
=>(x+22)(x-20)=0
=>\(\left[{}\begin{matrix}x=-22\\x=20\end{matrix}\right.\)
Tổng: 1 + 3 + 5 + ... + (2x + 1)
Số lượng số hạng là:
(2x + 1 - 1) : 2 + 1 = x + 1 (số hạng)
=> 1 + 3 + 5 + ... + (2x + 1) = (2x + 1 + 1) x (x + 1) : 2 = `(x+1)^2`
=> \(\left(x+1\right)^2=441\)
\(=>\left(x+1\right)^2=21^2\\ TH1:x+1=21\\ =>x=21-1\\ =>x=20\\ TH2:x+1=-21\\ =>x=-21-1\\ =>x=-20\)
Mà: x > 0 => x = 20