cho tam giác ABC vuông tại A, đường cao AH. kẻ HD vuông góc với AB, HE vuông góc với AC, MD vuông góc với DE, NE vuông góc với DE (M,N thuộc BC)
a) tính DE biết HB=4cm;HC=9cm.
b) Chứng minh tam giác DMH cân và M là trung điểm của HB
c) chứng minh N là trung điểm của HC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
nên ADHE là hình chữ nhật
=>AH=DE
=>DE=6(cm)
b: ta có: ADHE là hình chữ nhật
=>\(\widehat{EAH}=\widehat{EDH}\)
mà \(\widehat{EAH}+\widehat{HCA}=90^0\)(ΔHAC vuông tại H)
và \(\widehat{EDH}+\widehat{MDH}=\widehat{MDE}=90^0\)
nên \(\widehat{MDH}=\widehat{HCA}\)
=>\(\widehat{MDH}=\widehat{MHD}\)
=>ΔMDH cân tại M
Ta có: \(\widehat{MDH}+\widehat{MDB}=\widehat{HDB}=90^0\)
\(\widehat{MBD}+\widehat{MHD}=90^0\)(ΔHDB vuông tại D)
mà \(\widehat{MDH}=\widehat{MHD}\)
nên \(\widehat{MDB}=\widehat{MBD}\)
=>MB=MD
=>MB=MH
=>M là trung điểm của BH
c: Ta có: ADHE là hình chữ nhật
=>\(\widehat{HAD}=\widehat{HED}\)
mà \(\widehat{HAD}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)
và \(\widehat{HED}+\widehat{HEN}=\widehat{NED}=90^0\)
nên \(\widehat{HEN}=\widehat{HBA}\)
=>\(\widehat{NEH}=\widehat{NHE}\)
=>NE=NH
Ta có: \(\widehat{NEH}+\widehat{NEC}=\widehat{CEH}=90^0\)
\(\widehat{NHE}+\widehat{NCE}=90^0\)(ΔCEH vuông tại E)
mà \(\widehat{NEH}=\widehat{NHE}\)
nên \(\widehat{NEC}=\widehat{NCE}\)
=>NE=NC
=>NH=NC
=>N là trung điểm của HC