K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(=\frac{3}{5}+\frac{2}{5}=1\)

26 tháng 10 2019

b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)

\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)

\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)

 \(=\frac{1}{3.2}-\frac{5.2}{7.3}\)

\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)

\(=\frac{7}{42}-\frac{20}{42}\)

\(=-\frac{13}{42}\)

9 tháng 4 2018

a) 2/7+-3/8+11/7+1/3+1/7+5/-8

=(2/7+11/7+1/7)+(3/8+-5/8)+1/3

=2+2+1/3

=4+1/3

=13/3

b) -3/8+12/25+5/-8+2/-5+13/25

=(-3/8+-5/8)+(12/25+13/25)+-2/5

=-1+1+-2/5

=0+-2/5

=-2/5

c)7/8+1/8*3/8+1/8*5/8

=7/8+1/8*(3/8+5/8)

=7/8+1/8*1

=7/8+1/8

=1

9 tháng 4 2018

a) 2/7+-3/8+11/7+1/3+1/7+5/-8

=(2/7+11/7+1/7)+(3/8+-5/8)+1/3

=2+2+1/3

=4+1/3

=13/3

b) -3/8+12/25+5/-8+2/-5+13/25

=(-3/8+-5/8)+(12/25+13/25)+-2/5

=-1+1+-2/5

=0+-2/5

=-2/5

c)7/8+1/8*3/8+1/8*5/8

=7/8+1/8*(3/8+5/8)

=7/8+1/8*1

=7/8+1/8

=1

4 tháng 10 2021

yutyugubhujyikiu

Kiểm tra bài : Nhân, chia số hữu tỉThực hiện phép tính...
Đọc tiếp

Kiểm tra bài : Nhân, chia số hữu tỉ

Thực hiện phép tính :

(1) \(-\frac{3}{2}.\frac{7}{10}=\frac{-3.7}{2.10}=\frac{-21}{20}\)

(2) \(\frac{-5}{3}.\frac{6}{11}=\frac{-5.6}{3.11}=\frac{-30}{33}\)

(3) \(2\frac{1}{3}.\left(-1\frac{2}{3}\right)=\frac{7}{3}.\left(-\frac{5}{3}\right)=\frac{7.\left(-5\right)}{3.3}=-\frac{35}{9}\)

(4) \(\frac{9}{10}:\left(-\frac{15}{11}\right)=\frac{9}{10}.\left(\frac{-11}{15}\right)=\frac{9.\left(-11\right)}{10.15}=-\frac{99}{150}=-\frac{33}{50}\)

(5) \(\left(-1\right):\frac{3}{8}=\frac{\left(-1\right).8}{3}=-\frac{8}{3}\)

(6) \(\frac{1}{2}.\left(-\frac{5}{4}\right).\frac{8}{7}=\frac{1.\left(-5\right)}{2.4}.\frac{8}{7}=-\frac{5}{8}.\frac{8}{7}=-\frac{5.8}{8.7}=-\frac{5}{7}\)

(7) \(\frac{-9}{2}.\frac{2}{18}.\frac{1}{7}=\left(-\frac{9}{2}.\frac{2}{18}\right).\frac{1}{7}=\left(-\frac{9.2}{2.18}\right).\frac{1}{7}=-\frac{18}{36}.\frac{1}{7}=-\frac{18.1}{36.7}=-\frac{1}{14}\)

(8) \(\left(\frac{9}{2}-\frac{1}{3}\right).\frac{6}{17}=\left(\frac{27}{6}-\frac{2}{6}\right).\frac{6}{17}=\frac{27-2}{6}.\frac{6}{17}=\frac{25}{6}.\frac{6}{17}=\frac{25.6}{6.17}=\frac{25}{17}\)

(9) \(\left(-\frac{12}{13}:\frac{36}{39}\right).\frac{3}{5}=\left(-\frac{12}{13}.\frac{39}{36}\right).\frac{3}{5}=\left(\frac{-12.39}{13.36}\right).\frac{3}{5}=-\frac{1.3}{5}=-\frac{3}{5}\)

(10) \(\left(-\frac{3}{7}+\frac{7}{9}\right):\frac{4}{7}+\left(-\frac{4}{7}+\frac{2}{9}\right):\frac{4}{7}=\left(\left(-\frac{3}{7}+\frac{7}{9}\right)+\left(-\frac{4}{7}+\frac{2}{9}\right)\right):\frac{4}{7}\)

\(=\left(\left(-\frac{27}{63}+\frac{49}{63}\right)+\left(-\frac{36}{63}+\frac{14}{63}\right)\right):\frac{4}{7}=\left(\left(-\frac{27+49}{63}\right)+\left(\frac{-36+14}{63}\right)\right):\frac{4}{7}\)

\(=\left(\left(\frac{22}{63}\right)+\left(-\frac{22}{63}\right)\right):\frac{4}{7}\)

\(=\frac{22+\left(-22\right)}{63}:\frac{4}{7}=\frac{0}{63}:\frac{4}{7}=0\)

Mình đăng các bài toán này lên thứ nhất là để kiểm tra năng lực thứ hai các bạn có thể xem đây và rút ra lời giải cho các bài khác và nếu mình sai chỗ nào các bạn chỉ mình sẽ chỉnh

0
Tính giá trị biểu thức :1. \(A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\) 2. \(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)3. \(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)4. \(D=(\frac {150}{1111}+\frac{5}{75}-\frac{14}{77})(\frac{1}{5}-\frac{1}{6}-\frac{1}{30})...
Đọc tiếp

Tính giá trị biểu thức :

1. \(A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\) 

2. \(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)

3. \(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)

4. \(D=(\frac {150}{1111}+\frac{5}{75}-\frac{14}{77})(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}) \)

5. Cho \(M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right);N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\). Tính \(P=M-N\)

6. \(E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)

7. \(F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

8. \(G=\left[\frac{\left(6-4\frac{1}{2}\right):0,03}{\left(3\frac{1}{20}-2,65\right).4+\frac{2}{5}}-\frac{\left(0,3-\frac{3}{20}\right).1\frac{1}{2}}{\left(1,88+2\frac{3}{25}\right).\frac{1}{80}}\right]:\frac{49}{60}\)

9. \(H=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+...+\frac{1}{98.99.100}\)

10. \(I=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.....\frac{2499}{2500}\)

11. \(k=\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{999}\right)\)

12. \(L=1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}...\)(98 thừa số)

13. \(M=-2+\frac{1}{-2+\frac{1}{-2+\frac{1}{-2+\frac{1}{3}}}}\)

14. \(N=\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{26}{7}-\frac{13}{11}+\frac{13}{23}}\)

15. \(P=\left(\frac{1}{4}-1\right)\left(\frac{1}{5}-1\right)...\left(\frac{1}{2000}-1\right)\left(\frac{1}{2001}-1\right)\)

16. \(Q=\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\right):\left(\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\right)\)

3
2 tháng 5 2018

\(1)A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\)

\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}\)

\(=\frac{2}{4}=\frac{1}{2}\)

\(2)B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)

\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.\frac{4.4}{4.5}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)

\(=\frac{1.2.3.4}{2.3.4.5}=\frac{1}{5}\)

\(3)C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)

\(=\frac{2.2.3.3.4.4.5.5}{1.3.2.4.3.5.4.6}\)

\(=\frac{2.5}{1.6}=\frac{2.5}{1.3.2}=\frac{5}{3}\)

\(4)D=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}\right)\)

\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{6}{30}-\frac{5}{30}-\frac{1}{30}\right)\)

\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right).0=0\)

\(5)M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right)\)               \(N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\)

\(=\frac{58}{7}-\left(\frac{31}{9}+\frac{30}{7}\right)\)                         \(=\left(\frac{92}{9}+\frac{13}{5}\right)-\frac{56}{9}\)

\(=\frac{58}{7}-\left(\frac{217}{63}+\frac{270}{63}\right)\)                     \(=\left(\frac{460}{45}+\frac{117}{45}\right)-\frac{280}{45}\)

\(=\frac{58}{7}-\frac{487}{63}\)                                          \(=\frac{577}{45}-\frac{280}{45}\)

\(=\frac{522}{63}-\frac{487}{63}=\frac{5}{9}\)                             \(=\frac{33}{5}\)

\(P=M-N\)

\(\Rightarrow P=\frac{5}{9}-\frac{33}{5}\)

\(\Rightarrow P=\frac{25}{45}-\frac{297}{45}\)

\(\Rightarrow P=\frac{-272}{45}\)

Vậy P = \(\frac{-272}{45}\)

\(6)E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)

\(=\frac{5}{11}+\frac{5}{22}-\left(10101.\frac{4}{111111}\right)\)

\(=\frac{10}{22}+\frac{5}{22}-\frac{4}{11}\)

\(=\frac{15}{22}-\frac{8}{22}=\frac{7}{22}\)

\(7)F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

\(=\frac{1\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}.\frac{3\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{64}\right)}{1\left(1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}\right)}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{16}{64}-\frac{4}{64}+\frac{1}{64}-\frac{1}{256}\right)}{1\left(\frac{64}{64}-\frac{16}{64}+\frac{4}{64}-\frac{1}{64}\right)}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{13}{64}-\frac{1}{256}\right)}{1.\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{52}{256}-\frac{1}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{51}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{\frac{153}{256}}{\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{153}{256}:\frac{51}{64}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3}{4}+\frac{5}{8}\)

\(=\frac{3}{8}+\frac{5}{8}=1\)

Xin lỗi tớ đã làm hết buổi tối mà chỉ có 7 bài mong bạn thông cảm cho mình nhé !

9 tháng 2 2018
sao không tự làm một số bài dễ đi
22 tháng 8 2019

a, \(\frac{1}{4}+\frac{5}{12}-\frac{1}{13}-\frac{7}{8}\)

\(=\left(\frac{1}{4}+\frac{5}{12}\right)-\left(\frac{1}{13}+\frac{7}{8}\right)\)

\(=\frac{2}{3}-\frac{99}{104}\)

\(=-\frac{89}{312}\)

b, \(11\frac{3}{13}-2\frac{4}{7}+5\frac{3}{13}\)

\(=\left(11\frac{3}{13}+5\frac{3}{13}\right)-2\frac{4}{7}\)

\(=\frac{214}{13}-\frac{18}{7}\)

\(=\frac{1264}{91}\)

c, \(\left(6\frac{4}{9}+3\frac{7}{11}\right)-4\frac{4}{9}\)

\(=6\frac{4}{9}+3\frac{7}{11}-4\frac{4}{9}\)

\(=\left(6\frac{4}{9}-4\frac{4}{9}\right)+3\frac{7}{11}\)

\(=2+3\frac{7}{11}\)

\(=5\frac{7}{11}\)

\(=\frac{62}{11}\)

d, \(\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-0,25-\frac{1}{12}\right)\)

\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)

\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\cdot0\)

\(=0\)

e, \(-1,5\cdot\left(1+\frac{2}{3}\right)\)

\(=-\frac{3}{2}\cdot\frac{5}{3}\)

\(=-\frac{5}{2}\)

f, Đặt \(A=1^2+2^2+3^2+...+100^2\)

\(=1+2\left(3-1\right)+3\left(4-1\right)+...+100\left(101-1\right)\)

\(=1+2\cdot3-2+3\cdot4-3+...+100\cdot101-100\)

\(=\left(2\cdot3+3\cdot4+...+100\cdot101\right)-\left(1+2+3+...+100\right)\)

Đặt B = 2 . 3 + 3 . 4 + ... + 100 . 101 

3B = 2 . 3 ( 4 - 1 ) + 3 . 4 ( 5 - 2 ) + ... + 100 . 101 . ( 102 - 99 )

3B = 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 100 . 101 . 102 - 99 . 100 . 101 

3B = 100 . 101 . 102

B = \(\frac{100\cdot101\cdot102}{3}\)

B = 343400

Thay B vào A. Ta được :

\(A=343400-\left(1+2+3+...+100\right)\)

Thay C = 1 + 2 + 3 + ... + 100

Dãy số 1; 2; 3; ...; 100 có số số hạng là:

( 100 - 1 ) : 1 + 1 = 100 ( số hạng )

Tổng của dãy số đó là :

( 100 + 1 ) . 100 : 2 = 5050

=> C = 5050

Thay C vào A. Ta được :

\(A=343400-5050\)

\(A=338350\)

Vậy A = 338350