K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

a) \(3^{n+2}+3^n-2^{n+2}-2^n\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.2.5\)chia hết cho 10

b)\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

\(=3^{n+1}.10+2^{n+2}.3\)

\(=3^n.3.2.5+2^{n+1}.2.3\)chia hết cho 6

27 tháng 6 2016

mình k cho bạn rùi đấy Thảo Lê Thị

25 tháng 1 2017

Vì 3n \(⋮\)n (n \(\in\)N)

Để 8 - 3n \(⋮\)n thì 8 \(⋮\)\(\Rightarrow\)\(\in\)Ư(8)

Ư(8) = { 1; 2; 4; 8}

Vậy n \(\in\){ 1; 2; 4; 8}

25 tháng 1 2017

làm thế nàođể k đây bạn

21 tháng 11 2015

Hôm nay thứ 7 rồi

Dê !!!? - Khỏi làm ???!

2 tháng 7 2017

B1 a, Có n lẻ nên n = 2k+1(k E N)

Khi đó: n^2 + 7 = (2k+1)^2 +7 

= 4k^2 + 4k + 8

= 4k(k+1) +8 

Ta thấy k và k+1 là 2 số tự nhiên liên tiếp nên có ít nhất 1 số chia hết cho 2

=> k(k+1) chia hết cho 2 <=> 4k(k+1) chia hết cho 8

Mà 8 chia hết cho 8 <=> n^2 + 7 chia hết cho 8

9 tháng 10 2017

\(a,\)Để \(n+3⋮n\)

Mà \(n⋮n\Rightarrow3⋮n\)

=> n là ước của 3 .

Mà n lại số tự nhiên 

\(\Rightarrow n=\left\{1;3\right\}\) 

\(b,\) Để \(n+8⋮n+1\)

\(\Rightarrow\left(n+1\right)+7⋮n+1\)

Mà \(n+1⋮n+1\Rightarrow7⋮n+1\)

\(\Rightarrow6⋮n\)

Mà n là số tự nhiên 

\(\Rightarrow n=\left\{1;2;3;6\right\}\)

12 tháng 12 2018

\(3n+2⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\in\left\{1,5,-1,-5\right\}\)

\(\Rightarrow n\in\left\{2,6,0,-4\right\}\)

12 tháng 12 2018

\(2n-3⋮n+1\)

\(\Rightarrow2\left(n+1\right)-6⋮n+1\)

\(\Rightarrow6⋮n+1\)

\(\Rightarrow n+1\in\left\{6,1,2,3,-1,-6,-2,-3\right\}\)

\(\Rightarrow n\in\left\{5,0,1,2,-2,-7,-3,-4\right\}\)

11 tháng 11 2019

(n+2) chia hết (n+2)

=>[(3n+10)-(n+2)] chia hết cho (n+2)

[(3n+10)-(n+2)x3] chia hết cho (n+2)

[(3n+10)-(3n+6)] chia hết cho (n+2)

=4 chia hết cho (n+2)

Ư(4)={1;2;4}

(n+2)nchọn/loại
1-1loại
20chọn
42chọn

n thuộc {0;2}

11 tháng 11 2019

số 0 nha bạn

15 tháng 8 2016

c) n2 + 1 chia hết cho n - 1 (n thuộc N, n khác 1)                                                                                                                                                            
\(\Rightarrow\frac{n^2+1}{n-1}\in N\Rightarrow\frac{n^2+1}{n-1}=\frac{n^2+n-n-1+2}{n-1}=\frac{n\left(n+1\right)-\left(n+1\right)+2}{n-1}=\frac{\left(n-1\right)\left(n+1\right)+2}{n-1}=n+1+\frac{2}{n-1}\in N\)
Mà \(n+1\in N\)\(\Rightarrow\frac{2}{n-1}\in N\Rightarrow\)2 chia hết cho n - 1
Từ đây bạn tự làm tiếp nha........

18 tháng 2 2018

dễ như toán lớp 6 vậy