18(x_6)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x1 + x2 + x3 + x4 +...... + x50 + x51 = 0
<=> (x1 + x2) + (x3 + x4) +...... + (x49 + x50) + x51
<=> 1 + 1 + 1 + ..... + 1 + x51 = 0
=> 50 + x51 = 0
=> x51 = -50
ĐK: \(0\le x\le4\)
\(\dfrac{x!\left(4-x\right)!}{4!}-\dfrac{x!\left(5-x\right)!}{5!}=\dfrac{x!\left(6-x\right)!}{6!}\)
\(\Leftrightarrow1-\dfrac{5-x}{5}=\dfrac{\left(5-x\right)\left(6-x\right)}{30}\)
\(\Leftrightarrow x^2-17x+30=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=15\left(loại\right)\end{matrix}\right.\)
Có: \(x_2^2=x_1.x_3\Leftrightarrow\frac{x_2}{x_3}=\frac{x_1}{x_2}\left(1\right)\)
\(x_3^2=x_2.x_4\Rightarrow\frac{x_3}{x_4}=\frac{x_2}{x_3}\left(2\right)\)
\(x_4^2=x_3.x_5\Rightarrow\frac{x_4}{x_5}=\frac{x_3}{x_4}\left(3\right)\)
\(x_5^2=x_4.x_6\Rightarrow\frac{x_5}{x_6}=\frac{x_4}{x_5}\left(4\right)\)
Từ (1); (2); (3) và (4) \(\Rightarrow\frac{x_1}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}=\frac{x_4}{x_5}=\frac{x_5}{x_6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x_1}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}=\frac{x_4}{x_5}=\frac{x_5}{x_6}=\frac{x_1+x_2+x_3+x_4+x_5}{x_2+x_3+x_4+x_5+x_6}\)
\(\Rightarrow\frac{x_1^5}{x_2^5}=\frac{x_1}{x_2}.\frac{x_2}{x_3}.\frac{x_3}{x_4}.\frac{x_4}{x_5}.\frac{x_5}{x_6}=\left(\frac{x_1+x_2+x_3+x_4+x_5}{x_2+x_3+x_4+x_5+x_6}\right)^5=\frac{x_1}{x_6}\left(đpcm\right)\)
12 - 1 = 11 13 - 1 = 12 14 - 1 = 13
17 - 5 = 12 18 - 2 = 16 19 - 8 = 11
14 - 0 = 14 16 - 0 = 16 18 - 0 = 18
\(18\left(x-6\right)=0\Leftrightarrow x-6=0\Leftrightarrow x=6\)
18(x-6)=0
x-6=0:18
x-6=0
x=0+6
x=6
Vậy x=6