Chứng tỏ rằng:
abc - cba chia hết cho 99
Giúp mik bài giải nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :abc -cba=(100a+10b+c)-(100c+10b+a)
=100a+10b++a-100c-10b-a
=99a-99c
=9.(11a-11c) chia hết cho 9
Mặt khác : 99a-99c =11(9a-9c) chia hết cho 11
vậy hiệu của abc và cba chia hết cho 9 và 11
\(\frac{ }{abc}\) -\(\frac{ }{cba}\)
=100a+10b+c-(100c+10b+a)
=99a-99c \(⋮99\)
\(\Rightarrow\)\(\frac{ }{abc}\)-\(\frac{ }{cba}\)\(⋮99\)
theo để bài ta có abc - cba = (100a + 10b + c) - (100c + 10b +a) =(100a - a) + (10b - 10b) + (100c - c) =99a + 99c =99.(a+b) chia hết cho 9
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Bài 4:
$A+2=1+2+2^2+2^3+...+2^{11}$
$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$
$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$
$=(1+2)(1+2^2+....+2^{10})$
$=3(1+2^2+...+2^{10})\vdots 3$
Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$
Bài 5:
$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ
$\Rightarrow n(n+1)$ chẵn
$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh)
a) ab + ba = (10a + b) + (10b + a) = 11a + 11b = 11.(a + b) chia hết cho 11
b) abc - cba = (100a + 10b + c) - (100c + 10b + a) = 99a - 99c = 99.(a - c) chia hết cho 99
Ta có: abc - cba = 100a+10b+c-100c-10b-a
= (100a-a)+(10b-10b)-(100c-c)
= 99a - 99c
= 99(a-c) chia hết cho 99
abc - cba = ( 100a + 10b + c ) - ( 100c + 10b + a ) = 100a + 10 b + c - 100c - 10b - a = 99 a - 99 b chia hết cho 99 ( dpcm )