Chứng tỏ rằng 328 - 813 + 169 chia hết cho 72.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có so abcabc = 100000a + 10000b + 1000c + 100a + 10b + c
= 100100a + 10010b + 1001c
= 11 x ( 9100a + 910b + 91c )
Vay so abcabc : 11 = 9100a + 910b + 91c
Hay so abcabc chia het cho 11
**** mk nha
Ta có : abcabc = abc x 1000 + abc = abc x 1001 = abc x 11 x 91 => abcabc chia hết 11
Chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11 [chẳng hạn : 328 328 chia hết cho 11 ]
abcabc = 100000a + 10000b + 1000c + 100a +10b + c
= 100100a + 10010b + 1001c
100100a : 11 = 9100a
10010b : 11 = 9100
1001a : 11 = 91
Vậy ta có điều phải chứng minh
Ta có : abcabc = abc x 1000 + abc x 1 = abc x ( 1000 + 1 ) = abc x 1001 = abc x 7 x 11 x 13
=> abcabc chia hết cho 11.
( Xin lỗi vì mình không biết cách làm đấu gạch trên đầu )
ta có:
abc abc=a.100 000 + b.10 000 + c.1 000 + a.100 + b.10 + c
=a.100 100 + b.10 010 + c.1 001
=a.9 100.11 + b.910.11 + c.99.11
=11.(a.9100 + b.910 + c.99)
mà 11.(a.9100 + b.910 + c.99) chia hết cho 11
vậy abc abc chia hết cho 11(đpcm)
Bài giải :
Cách 1 :
abc abc = a x 100 000 + b x 10 000 + c x 1000 + a x 100 + b x 10 + c x 1
abc abc = a x ( 100 000 + 100 ) + b x ( 10 000 + 10 ) + c x ( 1000 + 1 )
abc abc = a x 110 000 + b x 11 000 + c x 1100
Ta có : a x 110 000 chia hết cho 11
b x 11 000 chia hết cho 11
c x 1100 chia hết cho 11
Suy ra :
a x 110 000 + b x 11 000 + c x 1100 chia hết cho 11 => abc abc chia hết cho 11 .
Cách 2 :
Các số chia hết cho 11 thì có hiệu của tổng các chữ số ở hàng lẻ với tổng các chữ số ở hàng chẵn chia hết cho 11 . ( Trường hợp hiệu bằng 0 => chia hết cho 11 )
Trong số abc abc các số ở hàng lẻ là : a , c , b
------------------------- Các số ở hàng chẵn là : b , a , c .
Hiệu là :
( a + c + b ) - ( b + a + c ) = 0
0 chia hết cho 11 .
Suy ra abc abc chia hết cho 11 .
Ta có:
\(10^{2011}=100...00\)( 2001 số 0 )
\(10^{2011}+8=100...08\)( 2010 số 0 )
=> Tổng các số hạng của 100...08 là: \(1+8=9\)
=> \(10^{2011}+8⋮9\)
Vì \(100...08\)có 2 chữ số tận cùng là 08 nên chia hết cho 8
=> \(10^{2011}+8⋮8\)
Vì \(10^{2011+8}⋮8,9\)
=> \(10^{2011}+8⋮72\left(72=9.8\right)\left(đpcm\right)\)
Có 72=8.9
Vì 10^2011 \(⋮\)8 và 8\(⋮\)8 nên 10^2011+8\(⋮\)8 (1)
Có 10^2011+8=1000...008 (có 2010 số 0)
Tổng các chữ số của 10^2011+8=1+8=9\(⋮\) (2)
Từ (1) và (2) suy ra
10^2011+8 chia hết cho 8 và 9
mà (8,9)=1 nên 10^2011 \(⋮\)8.9
10^2011\(⋮\)72
Vậy....
Ta có 10^2016 =1000...0(2016 chữ số 0) suy ra 10^2016 +80=10000...080 . Vì 080 chia hết cho 8 nên 10^2016+80 chia hết cho 8 .Mặt khác 10^2016+80 chia hết cho 9 vì 1+0+0+0+...+0+0+8+0=9 chia hết cho 9. Vì 10^2016+80 chia hết cho cả 8 và 9 nên nó chia hết cho 72.
Vậy 10^2016+80 chia hết cho 72
Số chia hết cho 72 là chia hết cho 9 và 8.
Ta có 1028 + 8 = 100...0 (28 chữ số 0) + 8 có tổng các chữ số là 1 + 0 + ... +0 + 8 = 9 chia hết cho 9.
1028 + 8 có 3 chữ số tận cùng là 008 chia hết cho 8.
=> 1028 + 8 chia hết cho 72
Lời giải:
$10^{28}+8=2^{28}.5^{28}+8=2^3.2^{25}.5^{28}+8=8.2^{25}.5^{28}+8$
$=8(2^{25}.5^{28}+1)\vdots 8(1)$
$10^{28}+8\equiv 1^{28}+8\equiv 1+8\equiv 9\equiv 0\pmod 9$
$\Rightarrow 10^{28}+8\vdots 9(2)$
Từ $(1); (2)\Rightarrow 10^{28}+8\vdots (8.9)$ hay $10^{28}+8\vdots 72$.