n.(n+1).(2n+1) là bội của 2 và 3
giúp minh mau đi ,mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:
3n = (3n + 3) + (-3) =3(n +1) + (-3)
Vì n+1 chia hết cho n+1 nên 3(n+1) chia hết cho n+1
Để 3n là bội của n+1 thì -3 chia hết cho n+1 hay n+1 thuộc Ư(-3)
Suy ra n+1 thuộc {1;3;-3;-1}
Nếu n+1=1
=> n=1-1=0
Nếu n+1 =-1
=>n=-1-1=-2
Nếu n+1=3
=>n=3-1=2
Nếu n+1=-3
=> n=-3-1=-4
Vậy x thuộc {0;2;-2;-4}
Câu b) bạn làm giống câu a nhé
a) \(n-4\)\(⋮\)\(n-1\)
\(\Leftrightarrow\)\(\left(n-1\right)-3\)\(⋮\)\(n-1\)
Ta thấy \(n-1\)\(⋮\)\(n-1\)
\(\Rightarrow\)\(3\)\(⋮\)\(n-1\)
hay \(n-1\)\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta lập bảng sau:
\(n-1\) \(-3\) \(-1\) \(1\) \(3\)
\(n\) \(-2\) \(0\) \(2\) \(4\)
Vậy....
a) \(n-4\)\(⋮\)\(n-1\)
\(\Leftrightarrow\)\(\left(n-1\right)-3\)\(⋮\)\(n-1\)
Ta thấy \(n-1\)\(⋮\)\(n-1\)
\(\Rightarrow\)\(3\)\(⋮\)\(n-1\)
hay \(n-1\)\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta lập bảng sau:
\(n-1\) \(-3\) \(-1\) \(1\) \(3\)
\(n\) \(-2\) \(0\) \(2\) \(4\)
Vậy....
2n+1 chia hết n+3 ( n khác -3 ; n thuộc N ) [ nếu bài là n thuộc Z thì viết là n thuộc Z ]
Ta có n+3 chia hết n+3
=> 2(n+3) chia hết n+3
=> 2n+6 chia hết n+3
=> [(2n+6)-(2n+1)] chia hết n+3
=> [2n+6-2n-1] chia hết n+3
=> 5 chai hết n+3
=> n+3 thuộc { 1 ; 5 ; -1 ; -5 }
Ta có bảng
n+3 | 1 | 5 | -1 | -5 |
n | -2 | 2 | -4 | -8 |
Thử lại đúng
Vậy \(n\in\left\{-2;2;-4;-8\right\}\)
Tìm n thuộc N thì bỏ mấy số ấm ra
2n-1 \(⋮\)n+3
=> n+3 \(⋮\)n+3
=> (2n-1)- (n+3) \(⋮\)n+3
=> (2n-1) - 2(n+3) \(⋮\)n+3
=> 2n-1 - 2n-3 \(⋮\)n+3
=> -4 \(⋮\)n+3
=> n+3 \(\in\)Ư(4) ={ 1;2; 4; -1; -2; -4}
=> n \(\in\){ -2; -1; 1; -4; -5; -7}
Vậy....
Vì 2n - 1 là bội của n + 3 => 2n - 1 ⋮ n + 3
Ta có: n + 3 ⋮ n + 3
=> 2( n + 3 ) ⋮ n + 3
<=> 2n + 6 ⋮ n + 3
=> [( 2n + 6 ) - ( 2n - 1 )] ⋮ n + 3
=> [ 2n + 6 - 2n + 1] ⋮ n + 3
<=> 7 ⋮ n + 3
=> n + 3 € Ư(7)
=> n + 3 € { - 7 ; - 1 ; 1 ; 7 }
+ Nếu n chia hết cho 3 thì tích chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3
+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3
=> tích chia hết cho 3 với mọi n
2n-1 là bội của n+3
=> 2n-1 chia hết n+3
Ta có : n+3 chia hết n+3
=>2(n+3) chia hết n+3
=>2n+6 chia hết n+3
=>((2n+6)-(2n-1)) chia hết cho n+3
=>(2n+6-2n+1) chia hết n+3
<=> 7 chia hết n+3
=> n+3 \(\in\) Ư(7)
=>n+3 \(\in\)(-1;-7;7;1)
ta có
n+3 | -1 | -7 | 7 | 1 |
n | -4 | -10 | 4 | -2 |
vậy n \(\in\)(-4;-10;4;-2)
a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow2n+2-2n-3⋮d\)
\(\Leftrightarrow-1⋮d\)
\(\Leftrightarrow d\inƯ\left(-1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)
hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)