K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
19 tháng 5 2021

\(P=3x+4y+\frac{2}{5x}+\frac{8}{7y}\)

\(=\frac{1}{2}x+\frac{1}{2}y+\frac{5}{2}x+\frac{2}{5x}+\frac{7}{2}y+\frac{8}{7y}\)

\(\ge\frac{1}{2}.\frac{34}{35}+2\sqrt{\frac{5}{2}x.\frac{2}{5x}}+2\sqrt{\frac{7}{2}y.\frac{8}{7y}}\)

\(=\frac{227}{35}\)

Dấu \(=\)khi \(x=\frac{2}{5},y=\frac{4}{7}\).

k ko biết

2 tháng 11 2017

treen toán ko dc đưa những hình ảnh này. OK

NV
21 tháng 10 2019

a/ ĐKXĐ: ....

\(\Leftrightarrow x^2-8x+16+x+14-6\sqrt{x+5}=0\)

\(\Leftrightarrow\left(x-4\right)^2+\frac{\left(x+14\right)^2-36\left(x+5\right)}{x+14+6\sqrt{x+5}}=0\)

\(\Leftrightarrow\left(x-4\right)^2+\frac{x^2-8x+16}{x+14+6\sqrt{x+5}}=0\)

\(\Leftrightarrow\left(x-4\right)^2\left(1+\frac{1}{x+14+6\sqrt{x+5}}\right)=0\)

2/

\(A=\frac{5x}{2}+\frac{2}{5x}+\frac{7y}{2}+\frac{8}{7y}+\frac{1}{2}\left(x+y\right)\)

\(A\ge2\sqrt{\frac{10x}{10x}}+2\sqrt{\frac{56y}{14y}}+\frac{1}{2}.\frac{34}{35}=\frac{227}{35}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{2}{5}\\y=\frac{4}{7}\end{matrix}\right.\)

17 tháng 10 2020

1.

\(PT\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{x+5}-3\right)^2=0\left(x\ge-5\right)\)

\(\Leftrightarrow x-4=\sqrt{x+5}-3=0\Leftrightarrow x=4\).

22 tháng 12 2017

Không mặn mà với số này cho lắm

\(A=\dfrac{5}{2}x+\dfrac{2}{5x}+\dfrac{7}{2}y+\dfrac{8}{7y}+\dfrac{1}{2}\left(x+y\right)\)

\(A\ge2\sqrt{\dfrac{5}{2}x.\dfrac{2}{5x}}+2\sqrt{\dfrac{7}{2}y.\dfrac{8}{7y}}+\dfrac{1}{2}.\dfrac{34}{35}\)

\(A\ge2+4+\dfrac{17}{35}=\dfrac{227}{35}\)

GTNN là \(\dfrac{227}{35}\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=\dfrac{4}{7}\end{matrix}\right.\)

19 tháng 8 2019

Dự đoán x = 2/5; y =4/7, giúp ta có được lời giải:D

\(A=\frac{5x}{2}+\frac{2}{5x}+\frac{7y}{2}+\frac{8}{7y}+\frac{1}{2}\left(x+y\right)\)

Đến đây đánh giá cô si + kết hợp giả thiết là xong:D

16 tháng 2 2016

P = 3x + 2y + 6/x + 8/y 
P = (3x/2 + 6/x) + (3x/2 + 3y/2) + (y/2 + 8/y) 
Ta có 3x/2 + 6/x >= 2.căn (3x/2.6/x) = 6 
dấu = xảy ra khi 3x/2 = 6/x <=> x = 2 
3x/2 + 3y/2 = 3/2.(x+y) >= 3/2.6 = 9 
dấu = xảy ra khi x + y = 6 
y/2 + 8/y >= 2.căn (y/2.8/y) = 4 
Dấu = xảy ra khi y/2 = 8/y <=> y = 4 
Vậy P >= 6 + 9 + 4 <=> P > = 19 
Dấu = xảy ra khi x = 2 và y = 4 
=> P min = 19

17 tháng 1 2019

sai roi ban phai dung ca x+y>=6 nua chu

20 tháng 5 2019

Đặt \(\hept{\begin{cases}x=\frac{2}{a}\\y=\frac{1009}{b}\end{cases}}\)

\(\Rightarrow2018=xy=\frac{2}{a}.\frac{1009}{b}=\frac{2018}{ab}\)

\(\Rightarrow ab=1\)

\(\Rightarrow a+b\ge2\)

Ta lại có:

\(P=a+b-\frac{2028}{\frac{4036}{a}+\frac{4036}{b}}\)

\(a+b-\frac{2028ab}{4036\left(a+b\right)}\ge2-\frac{2028}{4036.2}=\frac{3529}{2018}\)

Dấu = xảy ra khi \(a=b=1\) hoặc \(\hept{\begin{cases}x=2\\y=1009\end{cases}}\)

18 tháng 10 2020

Ta có:

\(P=5x+4y+\frac{8}{x}+\frac{9}{y}\)

\(P=\left(\frac{8}{x}+2x\right)+\left(\frac{9}{y}+y\right)+3\left(x+y\right)\)

Áp dụng BĐT Cauchy ta được:

\(P\ge2\sqrt{\frac{8}{x}\cdot2x}+2\sqrt{\frac{9}{y}\cdot y}+3\cdot5\)

\(=2\cdot4+2\cdot3+15=29\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy Min(P) = 29 khi \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)

18 tháng 10 2020

Cảm ơn ạ