Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: ....
\(\Leftrightarrow x^2-8x+16+x+14-6\sqrt{x+5}=0\)
\(\Leftrightarrow\left(x-4\right)^2+\frac{\left(x+14\right)^2-36\left(x+5\right)}{x+14+6\sqrt{x+5}}=0\)
\(\Leftrightarrow\left(x-4\right)^2+\frac{x^2-8x+16}{x+14+6\sqrt{x+5}}=0\)
\(\Leftrightarrow\left(x-4\right)^2\left(1+\frac{1}{x+14+6\sqrt{x+5}}\right)=0\)
2/
\(A=\frac{5x}{2}+\frac{2}{5x}+\frac{7y}{2}+\frac{8}{7y}+\frac{1}{2}\left(x+y\right)\)
\(A\ge2\sqrt{\frac{10x}{10x}}+2\sqrt{\frac{56y}{14y}}+\frac{1}{2}.\frac{34}{35}=\frac{227}{35}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{2}{5}\\y=\frac{4}{7}\end{matrix}\right.\)
1.
\(PT\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{x+5}-3\right)^2=0\left(x\ge-5\right)\)
\(\Leftrightarrow x-4=\sqrt{x+5}-3=0\Leftrightarrow x=4\).
Không mặn mà với số này cho lắm
\(A=\dfrac{5}{2}x+\dfrac{2}{5x}+\dfrac{7}{2}y+\dfrac{8}{7y}+\dfrac{1}{2}\left(x+y\right)\)
\(A\ge2\sqrt{\dfrac{5}{2}x.\dfrac{2}{5x}}+2\sqrt{\dfrac{7}{2}y.\dfrac{8}{7y}}+\dfrac{1}{2}.\dfrac{34}{35}\)
\(A\ge2+4+\dfrac{17}{35}=\dfrac{227}{35}\)
GTNN là \(\dfrac{227}{35}\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=\dfrac{4}{7}\end{matrix}\right.\)
Ta có:
\(P=5x+4y+\frac{8}{x}+\frac{9}{y}\)
\(P=\left(\frac{8}{x}+2x\right)+\left(\frac{9}{y}+y\right)+3\left(x+y\right)\)
Áp dụng BĐT Cauchy ta được:
\(P\ge2\sqrt{\frac{8}{x}\cdot2x}+2\sqrt{\frac{9}{y}\cdot y}+3\cdot5\)
\(=2\cdot4+2\cdot3+15=29\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy Min(P) = 29 khi \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Đặt \(\hept{\begin{cases}x=\frac{2}{a}\\y=\frac{1009}{b}\end{cases}}\)
\(\Rightarrow2018=xy=\frac{2}{a}.\frac{1009}{b}=\frac{2018}{ab}\)
\(\Rightarrow ab=1\)
\(\Rightarrow a+b\ge2\)
Ta lại có:
\(P=a+b-\frac{2028}{\frac{4036}{a}+\frac{4036}{b}}\)
\(a+b-\frac{2028ab}{4036\left(a+b\right)}\ge2-\frac{2028}{4036.2}=\frac{3529}{2018}\)
Dấu = xảy ra khi \(a=b=1\) hoặc \(\hept{\begin{cases}x=2\\y=1009\end{cases}}\)
P = 3x + 2y + 6/x + 8/y
P = (3x/2 + 6/x) + (3x/2 + 3y/2) + (y/2 + 8/y)
Ta có 3x/2 + 6/x >= 2.căn (3x/2.6/x) = 6
dấu = xảy ra khi 3x/2 = 6/x <=> x = 2
3x/2 + 3y/2 = 3/2.(x+y) >= 3/2.6 = 9
dấu = xảy ra khi x + y = 6
y/2 + 8/y >= 2.căn (y/2.8/y) = 4
Dấu = xảy ra khi y/2 = 8/y <=> y = 4
Vậy P >= 6 + 9 + 4 <=> P > = 19
Dấu = xảy ra khi x = 2 và y = 4
=> P min = 19
a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)
Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2
b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)
Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)
Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)
\(P=3x+4y+\frac{2}{5x}+\frac{8}{7y}\)
\(=\frac{1}{2}x+\frac{1}{2}y+\frac{5}{2}x+\frac{2}{5x}+\frac{7}{2}y+\frac{8}{7y}\)
\(\ge\frac{1}{2}.\frac{34}{35}+2\sqrt{\frac{5}{2}x.\frac{2}{5x}}+2\sqrt{\frac{7}{2}y.\frac{8}{7y}}\)
\(=\frac{227}{35}\)
Dấu \(=\)khi \(x=\frac{2}{5},y=\frac{4}{7}\).