Cho tam giác ABC. Phân giác góc A và góc B cắt nhau tại I. Kẻ IM vuông góc AB (M ϵ AB), kẻ IN vuông góc BC (N ϵ BC), kẻ IQ vuông góc AC (Q ϵ AC).
a. Chứng minh : △ IAM = △ IQA.
b. Chứng minh : IM = IN = IQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNI và ΔMPI có
MN=MP
NI=PI
MI chung
Do đó: ΔMNI=ΔMPI
Ta có: ΔMNP cân tại M
mà MI là đường trung tuyến
nên MI là đường cao
b: Xét tứ giác MNQP có
I là trung điểm của MQ
I là trung điểm của NP
Do đó: MNQP là hình bình hành
Suy ra: MN//PQ
c: Xét tứ giác MEQF có
ME//QF
ME=QF
Do đó: MEQF là hình bình hành
Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của MQ
nên I là trung điểm của FE
hay E,I,F thẳng hàng
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
=>ΔAHB=ΔAKC
=>AH=AK
b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
góc KBC=góc HCB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC can tại I
Xét ΔABC có
BH,CK là đường cao
BH cắt CK tại I
=>I là trực tâm
=>AI vuông góc BC tại M
ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác của góc BIC
c: Xét ΔABC có AK/AB=AH/AC
nên KH//BC
a: ΔBCA cân tạiA
mà AH là đường cao
nên AH là phân giác
b: Xet ΔBMI vuông tại M và ΔBHI vuông tại H có
BI chung
góc MBI=góc HBI
=>ΔBMI=ΔBHI
=>IM=IH
Xét ΔIMA vuông tại M và ΔINA vuông tại N có
AI chung
góc MAI=góc NAI
=>ΔIMA=ΔINA
=>IM=IN=IH
c: Xet ΔIMA vuông tại M và ΔINA vuông tại N có
AI chung
góc MAI=góc NAI
=>ΔIMA=ΔINA
=>góc MIA=góc NIA
=>IA là phân giác của góc MIN
1: Xét ΔOMB và ΔONA có
OM=ON
\(\widehat{BOM}\) chung
OB=OA
Do đó: ΔOMB=ΔONA
Suy ra: \(\widehat{OMB}=\widehat{ONA}\)
mà \(\widehat{OMB}+\widehat{AMI}=180^0\)
và \(\widehat{ONA}+\widehat{BNI}=180^0\)
nên \(\widehat{AMI}=\widehat{BNI}\)
2: Ta có: OM+MA=OA
ON+NB=OB
mà OM=ON
và OA=OB
nên MA=NB
Xét ΔIAM và ΔIBM có
\(\widehat{IAN}=\widehat{IBN}\)(ΔONA=ΔOMB
MA=NB
\(\widehat{AMI}=\widehat{BNI}\)
Do đó: ΔIAM=ΔIBN
a: Xét ΔIAM vuông tại M và ΔIAQ vuông tại Q có
AI chung
\(\widehat{MAI}=\widehat{QAI}\)
Do đó: ΔIAM=ΔIAQ
b: ta có: ΔIAM=ΔIAQ
=>IM=IQ
Xét ΔBMI vuông tại M và ΔBNI vuông tại N có
BI chung
\(\widehat{MBI}=\widehat{NBI}\)
Do đó: ΔBMI=ΔBNI
=>IM=IN
mà IM=IQ
nên IM=IN=IQ