Cho tam giác ABC cân tại A.Trên AB lấy D.Trên tia đối của tia CA lấy E sao cho BD=CE.I là giao điểm của BC và DE.Từ D vẽ đg song song AC và cắt BC tại K.
a,Tứ giác DCEK là hình gì?
b,So sánh DI và EI,KI và CI.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác BDK cân tại D vì DK//AC nên \(\widehat{DKB}=\widehat{ACB}\) (đồng vị) mà \(\widehat{B}=\widehat{C}\) (vì ABC cân tại A).
Suy ra \(\widehat{B}=\widehat{K}\) => tam giác DBK cân.
b) Theo câu a suy ra DB = DK. Mà DB = CE nên DK = CE, mặt khác DK // CE nên tứ giác DCEK là hình bình hành (vì có 1 cặp cạnh đối song song và bằng nhau)
DI = IE, KI = IC (vì theo tính chất 2 đường chéo của hình hành cắt nhau tại trung điểm mỗi đường.)
a) Tam giác ABC cân tại A ta có : \(\widehat{ABC}=\widehat{ACB}\)
Mà DK // AC nên \(\widehat{DKB}=\widehat{ACB}\)(vì so le trong)\(\Rightarrow\widehat{ABC}=\widehat{DKB}\left(=\widehat{ACB}\right)\)
Tam giác BDK có \(\widehat{DKB}=\widehat{ABC}\)nên là tam giác cân tại D
b) Tam giác BDK cân tại D nên DK=BD mà BD=CE
Do đó DK=CE
Tứ giác DCEK có DK=CE,DK // CE (vì DK // AC ) nên là hình bình hành (dấu hiệu )
c) Vì DCEK là hình bình hành nên DI=IE (tính chất)
Vậy DI=IE
1:
a: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB<AC
nên BD<CD
b: AB<AC
=>góc B>góc C
góc ADB=góc C+góc CAD
góc ADC=góc B+góc BAD
mà góc C<góc B và góc CAD=góc BAD
nên góc ADB<góc ADC
a) Áp dụng định lý Talet vào tam giác ABC có DE//BC
\(\frac{AB}{BD}=\frac{AC}{CE}\Rightarrow\frac{CE}{BD}=\frac{AC}{AB}\)
mà BD=CF (gt) \(\Rightarrow\frac{CE}{CF}=\frac{AC}{AB}\left(1\right)\)
Ta có: DE//BC mà B \(\in\)BC
=> DE//MC
\(\Rightarrow\frac{MD}{MF}=\frac{CE}{CF}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{MD}{MF}=\frac{AC}{AB}\left(đpcm\right)\)
b) BC=8cm, BD=5cm, DE=3cm
Áp dụng định lý Talet vào tam giác ABC có: DE//BC
\(\Rightarrow\frac{DF}{BC}=\frac{AD}{AB}=\frac{AE}{AC}\)
\(\Rightarrow\frac{DE}{BC}=\frac{AD}{AB}=\frac{AB-BD}{AB}\)
\(\Leftrightarrow\frac{AB-5}{AB}=\frac{3}{8}\)
<=> 3AB=8AB-40
<=> 5AB=40
<=> AB=8cm
AB=BC=8cm => Tam giác ABC cân (đpcm)
a: Xét ΔABC có IK//AC
nên IK/AC=BI/AB
mà AC=AB
nên IK=IB
hay ΔIKB cân tại I
b: Xét ΔIKN và ΔMCN có
\(\widehat{NIK}=\widehat{NMC}\)
IK=MC
\(\widehat{IKN}=\widehat{MCN}\)
Do đó; ΔIKN=ΔMCN
Suy ra: IK=CM; KN=NC
c: 2IN+CM=IM+CM>IC
mà IC=BM
nên 2IN+CM>BM
Mình chỉ giải được câu a thôi nhé
ik//ac=>góc ACB=góc IKB(1)
Do tam giác ABC cân tại A =>góc ABC=góc ACB(2)
từ (1) và (2)=>góc IBK= góc ABC hay góc IKB=góc IBK=>tam giác IBK cân tại I
a: góc DFB=góc ACB
góc DBF=góc ACB
=>góc DFB=góc DBF
=>ΔDBF cân tại D
b: Xét tứ giác DCEF có
DF//CE
DF=CE
=>DCEF là hình bình hành