K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)-28=0\)

=>\(\left(x^2+5x-6\right)\left(x^2+5x+6\right)-28=0\)

=>\(\left(x^2+5x\right)^2-36-28=0\)

=>\(\left(x^2+5x-8\right)\left(x^2+5x+8\right)=0\)

mà \(x^2+5x+8=x^2+5x+\dfrac{25}{4}+\dfrac{7}{4}=\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}>0\forall x\)

nên \(x^2+5x-8=0\)

\(\Delta=5^2-4\cdot1\cdot\left(-8\right)=25+32=57>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left[{}\begin{matrix}x=\dfrac{-5-\sqrt{57}}{2}\\x=\dfrac{-5+\sqrt{57}}{2}\end{matrix}\right.\)

9 tháng 8 2019

\(a,\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)-28=0\)

\(\Leftrightarrow\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-28=0\)

\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+6\right)-28=0\)

\(\Leftrightarrow\left(x^2+5x\right)^2-36-28=0\)

\(\Leftrightarrow\left(x^2+5x\right)^2-64=0\)

\(\Leftrightarrow\left(x^2+5x-8\right)\left(x^2+5x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-\sqrt{57}}{2}-\frac{5}{2}\\x=\frac{\sqrt{57}}{2}-\frac{5}{2}\end{matrix}\right.\)

b, \(\left(x^2+4x+3\right)\left(x^2+6x+8\right)=0\)

\(\Leftrightarrow\left(x^2+3x+x+3\right)\left(x^2+4x+2x+8\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+1\right)\left(x+4\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\\x=-2\\x=-4\end{matrix}\right.\)

9 tháng 8 2019

\(\left(a-1\right)\left(a+2\right)\left(a+3\right)\left(a+6\right)-28=\left(a-1\right)\left(a+6\right)\left(a+2\right)\left(a+3\right)-28=\left(a^2+5a-6\right)\left(a^2+5a+6\right)-28=\left(a^2+5a\right)^2-36-28=\left(a^2+5a\right)^2=64\Leftrightarrow a^2+5a=\pm8;a^2+5a+6,25=\left(a+2,5\right)^2\ge0\Rightarrow a^2+5a\ge-6,25\Rightarrow a^2+5a=8\Leftrightarrow\left(a+2,5\right)^2=14,25\Leftrightarrow a=\pm\sqrt{14,25}-2,5\)

17 tháng 7 2017

a) Ta có : ( x + 1 ).( 3 - x ) > 0

Th1 : \(\hept{\begin{cases}x+1>0\\3-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x>3\end{cases}\Rightarrow}x>3}\)

Th2 : \(\hept{\begin{cases}x+1< 0\\3-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x< 3\end{cases}\Rightarrow}x< -1}\)

17 tháng 7 2017

sao ko ai làm giúp mk vậy

6 tháng 7 2021

\(a,PT\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2-18x-10=0\)

\(\Leftrightarrow-5x-18=0\)

\(\Leftrightarrow x=-\dfrac{18}{5}\)

Vậy ...

\(b,PT\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+10=0\)

\(\Leftrightarrow12x+6=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy ...

\(c,PT\Leftrightarrow\left(x+1\right)^3+3^3=0\)

\(\Leftrightarrow\left(x+1+3\right)\left(x^2+2x+1-3x-3+9\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^2-x+7\right)=0\)

Thấy : \(x^2-\dfrac{2.x.1}{2}+\dfrac{1}{4}+\dfrac{27}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\)

\(\Rightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy ...

\(d,PT\Leftrightarrow\left(x-2\right)^3+1^3=0\)

\(\Leftrightarrow\left(x-2+1\right)\left(x^2-4x+4-x+2+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+7\right)=0\)

Thấy : \(x^2-5x+7=x^2-\dfrac{5.x.2}{2}+\dfrac{25}{4}+\dfrac{3}{4}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

\(\Rightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy ...

6 tháng 7 2021

sao lại trả lời lại nhỉ ??

Bài 3: 

Gọi số nhóm là x

Theo đề, ta có: \(x\in\left\{1;2;3;4;6;9;12;18;36\right\}\)

mà 2<x<6

nên \(x\in\left\{3;4\right\}\)

Vậy: Có 2 cách chia nhóm

4 tháng 10 2021

a) 25 - x = 12 + 6  =18

x=25-18=7 Vậy x=7

b) 7 + 2 x ( x -3 ) = 11   

2.(x-3)=11-7=4

x-3=4:2=2

x=3+2=5                          

c) 102 : ( 2.x + 13) : 4) = 6   

(2.x+13):4=102:6=17

2.x+13=17.4=68

2.x=68-13=55

x=27,5 Vậy x=27,5

Bài 3: 

Gọi số nhóm là x

Theo đề, ta có: x∈{1;2;3;4;6;9;12;18;36}x∈{1;2;3;4;6;9;12;18;36}

mà 2<x<6

nên x∈{3;4}x∈{3;4}

Vậy: Có 2 cách chia nhóm

còn bài 1 chắc bn làm đc nha tick mk nha

14 tháng 7 2019

\(x^3-x=0\Leftrightarrow x\left(x^2-1\right)=0\Leftrightarrow\left(x-1\right)x\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x=-1\end{matrix}\right..Vậy:x\in\left\{-1;0;-1\right\}\)

\(x^3+4x=0\Leftrightarrow x\left(x^2+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+4=0\end{matrix}\right.mà:x^2+4\ge0+4=4\Rightarrow x=0\)

\(\left(x+2\right)^2=x+2\Leftrightarrow\left(x+2\right)\left(x+2-1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

1 tháng 8 2021

a)\(2x+3\left(x+4\right)-14=8\)

\(2x+3x+12-14=8\)

\(2x+3x-2=8\)

\(5x-2=8\)

\(5x=8+2\)

\(5x=10\)

\(x=10:5\)

\(x=2\)

1 tháng 8 2021

b)\(x+2x+3x=4x+16\)

\(x\left(1+2+3\right)=4x+16\)

\(6x-4x=16\)

\(2x=16\)

\(x=16:2\)

\(x=8\)

NV
10 tháng 2 2020

b/ Ko biết yêu cầu

4/ \(E=\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{x^6}{27x^6}}=\frac{5}{\sqrt[5]{27}}\)

Dấu "=" xảy ra khi \(\frac{x^2}{3}=\frac{1}{x^3}\Leftrightarrow x=\sqrt[5]{3}\)

\(F=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge3\sqrt[3]{\frac{x^2}{4x^2}}=\frac{3}{\sqrt[3]{4}}\)

Dấu "=" xảy ra khi \(\frac{x}{2}=\frac{1}{x^2}\Rightarrow x=\sqrt[3]{2}\)

6/ \(Q=\frac{\left(x+1\right)^2+16}{2\left(x+1\right)}=\frac{x+1}{2}+\frac{8}{x+1}\ge2\sqrt{\frac{8\left(x+1\right)}{2\left(x+1\right)}}=4\)

Dấu "=" xảy ra khi \(\frac{x+1}{2}=\frac{8}{x+1}\Leftrightarrow x=3\)

NV
10 tháng 2 2020

7/

\(R=\frac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge2\sqrt{\frac{25\left(\sqrt{x}+3\right)}{\sqrt{x}+3}}=10\)

Dấu "=" xảy ra khi \(\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\Leftrightarrow x=4\)

8/

\(S=x^2+\frac{2000}{x}=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{1000^2x^2}{x^2}}=300\)

Dấu "=" xảy ra khi \(x^2=\frac{1000}{x}\Leftrightarrow x=10\)