1 phần 1 nhân 3 cộng 1 phần 3 nhân 5 cộng 1 phần 5 nhân 7 cộng ... cộng 1 phần 99 nhân 101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\frac{1}{3}.5+\frac{1}{5}.7+...+\frac{1}{97}.99\)
=>A=\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
=>2A=\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
=>2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
=>2A=\(\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)
=>A=\(\frac{32}{99}:2=\frac{32}{99}.\frac{1}{2}=\frac{32}{198}=\frac{16}{99}\)
Đặt: \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2011.2013}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2011.2013}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2013}\right)\)
\(=\frac{1}{2}.\frac{2012}{2013}\)
\(=\frac{1006}{2013}\)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{18.19.20}\)
\(2A=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{20-18}{18.19.20}=\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}=\dfrac{1}{2}-\dfrac{1}{19.20}\)
\(\Rightarrow A=\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right):2\)
\(\frac{1}{1}\)x 2 x 3 + \(\frac{1}{2}\)x 3 x 4 + \(\frac{1}{3}\)x 4 x 5 + \(\frac{1}{4}\)x 5 x 6
= 1 x 2 + \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{4}\)x 6
= 2 +\(\frac{1}{2}\)+ \(\frac{1}{3}\)+ 1, 5
=
1/3 . 2/7 + 1/3 . 5/7 + 1/3
= 1/3 ( 2/7 + 5/7 + 1 )
= 1/3 . 2
= 2/3
\(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{99\times101}\\ =\dfrac{1}{2}\times\left(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{99\times101}\right)\\ =\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{1}{2}\times\left(1-\dfrac{1}{101}\right)\\ =\dfrac{1}{2}\times\dfrac{100}{101}\\ =\dfrac{50}{101}\)