Tìm các chữ số a, b, c, thỏa mãn: ab5 = ab + 230
Các bạn giúp mình thật nhanh nha. Mình ko có thời gian
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\overline{abb}+25=\overline{cdc}\)
Do \(a\ne c\) => đâu là phép cộng có nhớ đến hàng trăm => \(b\ge7\) để thoả mãn điều kiện trên
+ Với b=7 \(\overline{a77}+25=100.a+77+25=100.a+102=\overline{cdc}\)
100.a là số tròn chục nên kết quả 100.a+102 phải có chữ số tận cùng là 2 => c=2
\(\Rightarrow\overline{a77}+25=100.a+102=\overline{2d2}=202+10.d\)
\(\Rightarrow100a-10.d=100\Rightarrow10.a-d=10\Rightarrow a=1;d=0\)
\(\overline{abbcdc}=177202\) không phải là số chính phương (số chính phương có tận cùng là 0;1;4;5;6;9) nên b=7 loại
+ Với b=8 \(\Rightarrow\overline{a88}+25=100.a+88+25=100.a+113=\overline{cdc}\)
Do 100.a là số tròn chục nên 100.a+113 pcs chữ số tận cùng là 3 => c=3
\(\Rightarrow\overline{a88}+25=100.a+113=\overline{3d3}=303+10.d\)
\(\Rightarrow100.a-10.d=190\Rightarrow10.a-d=19\)
Do 10.a là số tròn chục nên 10.a-d=19 => d=1 => a=2
\(\Rightarrow\overline{abbcdc}=288313\) Không là số chính phương nên b=8 loại
+ Với b=9 \(\Rightarrow\overline{a99}+25=100.a+99+25=100.a+124=\overline{cdc}\)
Do 100.a là số tròn chục => 100.a+124 có chữ số tận cùng là 4 => c=4
\(\Rightarrow\overline{a99}+25=100.a+124=\overline{4d4}=404+10.d\)
\(\Rightarrow100.a-10.d=280\Rightarrow10.a-d=28\)
Lý luận như trên => d=2 => a=3
\(\Rightarrow\overline{abbcdc}=399424=632^2\) nên chọn b=9
Kết luận: a=3; b=9; c=4; d=2
\(\left\{{}\begin{matrix}ab+bc+ca=abc\\a+b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}abc-ab-bc-ca=0\\a+b+c-1=0\end{matrix}\right.\)
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)
\(=abc-ab-ac+a-bc+b+c-1\)
\(=\left(abc-ab-bc-ca\right)+\left(a+b+c-1\right)\)
\(=0+0=0\) (ddpcm)
\(VT=\left(a-1\right)\left(b-1\right)\left(c-1\right)\\ =\left(ab-a-b+1\right)\left(c-1\right)\\ =abc-ab-ac+a-bc+b+c-1\\ =abc-\left(ab+bc+ca\right)+\left(a+b+c\right)-1\\ =abc-abc+1-1=0=VP\)
1) Các số lập được là: abc; acb; bac; bca; cab; cba
A = abc + acb + bac + bca + cab + cba
A = (100a + 10b + c) + (100a + 10c + b) + (100b + 10a + c) + (100b + 10c + a) + (100c + 10a + b) + (100c + 10b + a)
A = 222a + 222b + 222c
A = 222.(a + b + c)
A = 6.37.(a + b + c) chia hết cho 6 và 37 (đpcm)
2) Do x + y và x - y luôn cùng tính chẵn lẻ
Mà (x + y).(x - y) = 2002 là số chẵn
=> x + y và x - y cùng chẵn
=> x + y và x - y cùng chia hết cho 2
=> (x + y).(x - y) chia hết cho 4
Mà 2002 không chia hết cho 4 nên không tồn tại 2 số tự nhiên x; y thỏa mãn đề bài
\(\overline{ab5}=\overline{ab}+230\)
=>\(10\overline{ab}+5=\overline{ab}+230\)
=>\(9\overline{ab}=225\)
=>\(\overline{ab}=25\)
Vậy: a=2;b=5
Giúp mình nhanh đi, please help me