Ai gải giúp mik bài này đi, mình tick cho
Biết x+y+xy=8
Tìm min x2+y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 25 - y² = 8(x - 2009)
⇔ 25 - y² = 8x - 16072
⇔ - 8x = -16072 - 25 + y²
⇔ - 8x = -16097 + y²
⇔ x = 160978 - 18y²
Vậy x = 160978 - 18y²
b,=>x(y+2)-(y+2)=3
=>(y+2)(x-1)=3
Vì x,y thuộc Z nên y+2 và x-1 thuộc Ư(3)={+1;+3;-1;-3}
Sau đó thay lần lượt các cặp -1 với -3 và 1 với 3
c,Tìm x, y biết: x + y + 9 = xy - 7
=> x + y + 16 = xy
=> x + 16 = xy - y
=> x + 16 = y(x-1)
=> y = x+16y−1
Do y thuộc Z => x+16x−1
thuộc Z => x + 16 chia hết cho x - 1
=> x−1+17x−1 = 1 + 17x−1
=> x - 1 thuộc Ư(17) = {+ 1 ; + 17}
=> x thuộc {0 ; 2 ; -16 ; 18} ( thỏa mãn đề bài)
Nếu x = 0 thì y = -16
Nếu x = 2 thì y = 18
Nếu x = -16 thì y = 0
Nếu x = 18 thì y = 2
Vậy (x,y) = (0; - 16) ; (2;18) ; (-16 ; 0) ; (18 ; 2)
Thay x, y ta được cặp số thỏa mãn đề bài
\(A=4\cdot3\left(-2\right)-2\left(3+2\right)=-24-10=-34\\ B=\left(x+y\right)^2-3\left(x+y\right)=\left(x+y\right)\left(x+y-3\right)=\left(x+y\right)\left(2+1-3\right)=0\)
Giải:
Do x và y là 2 đại lượng tỉ lệ thuận nên:
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}\Rightarrow\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow\frac{y_1}{6}=\frac{y_2}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y_1}{6}=\frac{y_2}{12}=\frac{y_2-y_1}{12-6}=\frac{4}{6}=\frac{2}{3}\)
+) \(\frac{y_1}{6}=\frac{2}{3}\Rightarrow y_1=4\)
+) \(\frac{y_2}{12}=\frac{2}{3}\Rightarrow y_2=8\)
Vậy \(y_1=4;y_2=8\)
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
x2 + y2 = 22+22
ai chả bt thế nhưng biến đổi thế nào mới quan trọng