giải hộ mình bải 10 với ạ. Mình cám ơn nhiều ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
22/ \(\omega A=8\pi\)
\(A^2=x^2+\dfrac{v^2}{\omega^2}\Leftrightarrow A^2=3,2^2+\dfrac{\left(4,8\pi\right)^2}{\omega^2}\)
\(\Leftrightarrow\omega^2A^2=3,2^2\omega^2+23,04\pi^2\Leftrightarrow64\pi^2=3,2^2.\omega^2+23,04\pi^2\Leftrightarrow\omega=2\pi\left(rad/s\right)\)
\(\Rightarrow f=\dfrac{\omega}{2\pi}=\dfrac{2\pi}{2\pi}=1\left(Hz\right)\Rightarrow D.1Hz\)
23/ \(\omega A=20;\omega^2A=80\Rightarrow\left\{{}\begin{matrix}\omega=4\left(rad/s\right)\\A=5cm\end{matrix}\right.\)
\(\Rightarrow v=\omega\sqrt{A^2-x^2}=4.\sqrt{5^2-4^2}=12\left(cm/s\right)\Rightarrow A.12cm/s\)
a: ĐKXĐ: \(x\notin\left\{10;-10;\sqrt{10};-\sqrt{10}\right\}\)
b: \(A=\dfrac{5x^3+50x+2x^2+20+5x^3-50x-2x^2+20}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
\(=\dfrac{10x^3+40}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
1) Vì x=25 thỏa mãn ĐKXĐ nên Thay x=25 vào biểu thức \(A=\dfrac{\sqrt{x}-2}{x+1}\), ta được:
\(A=\dfrac{\sqrt{25}-2}{25+1}=\dfrac{5-2}{25+1}=\dfrac{3}{26}\)
Vậy: Khi x=25 thì \(A=\dfrac{3}{26}\)
2) Ta có: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}+\dfrac{2x+8\sqrt{x}-6}{x-\sqrt{x}-2}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-5\sqrt{x}+6+2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)
10. Câu này chứng minh BĐT BSC:
\(\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ab+bc\right)^2}=b\left(a+c\right)\)
11.
Ta có: \(\dfrac{1}{1+a}+\dfrac{1}{1+b}-\dfrac{2}{1+\sqrt{ab}}\)
\(=\dfrac{\left(1+b\right)\left(1+\sqrt{ab}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}+\dfrac{\left(1+a\right)\left(1+\sqrt{ab}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}-\dfrac{2\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)
\(=\dfrac{1+b+\sqrt{ab}+b\sqrt{ab}}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}+\dfrac{1+a+\sqrt{ab}+a\sqrt{ab}}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}-\dfrac{2+2a+2b+2ab}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)
\(=\dfrac{-a-b+2\sqrt{ab}+a\sqrt{ab}+b\sqrt{ab}-2ab}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\forall x,y\ge1\)
Đẳng thức xảy ra khi \(a=b=1\)
a) Phương trình hoành độ giao điểm là:
\(x^2=\left(m+2\right)x-2m\)
\(\Leftrightarrow x^2-\left(m+2\right)x+2m=0\)
\(\Delta=\left(m+2\right)^2-8m=m^2+4m+4-8m=m^2-4m+4=\left(m-2\right)^2\)
Để (d) và (P) cắt nhau tại hai điểm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow\left(m-2\right)^2>0\)
mà \(\left(m-2\right)^2\ge0\)
nên \(m-2\ne0\)
hay \(m\ne2\)
Vậy: Để (d) và (P) cắt nhau tại hai điểm phân biệt thì \(m\ne2\)
1) $-xyz^2-3xz.yz=-xyz^2-3xyz^2=-4xyz^2$
2) $-8x^2y-x.(xy)=-8x^2y-x^2y=-9x^2y$
3) $4xy^2.x-(-12x^2y^2)=4x^2y^2+12x^2y^2=16x^2y^2$
4) $\frac12 x^2y^3-\frac13 x^2y.y^2=\frac12 x^2y^3-\frac13 x^2y^3=\frac16 x^2y^3$
5) $3xy.(x^2y)-\frac56 x^3y^2=3x^3y^2-\frac56 x^3y^2=\frac{13}{6}x^3y^2$
6) $\frac34 x^4y-\frac16 xy.x^3=\frac34 x^4y-\frac16 x^4y=\frac{7}{12}x^4y$
7) $\frac45y^2x^5-x^3.x^2y^2=\frac45 x^5y^2-x^5y^2=-\frac15 x^5y^2$
8) $-xy^3-\frac27 y^2.xy=-xy^3-\frac27 xy^3==\frac97 xy^3$
9) $\frac56 xy^2z-\frac14 xyz.y=\frac56 xy^2z-\frac14 xy^2z=\frac{7}{12} xy^2z$
10) $15x^4+7x^4-20x^2.x^2$
$=22x^4-20x^4=2x^4$
11) $\frac12 x^5y-\frac34 x^5y+xy.x^4$
$=-\frac14 x^5y+x^5y=\frac34 x^5y$
12) $13x^2y^5-2x^2y^5+x^6$
$=11x^2y^5+x^6$
Bài 10:
1: \(-xyz^2-3xz\cdot yz=-xyz^2-3xyz^2=-4xyz^2\)
2: \(-8x^2y-x\cdot xy=-8x^2y-x^2y=-9x^2y\)
3: \(4xy^2\cdot x-\left(-12x^2y^2\right)=4x^2y^2+12x^2y^2=16x^2y^2\)
4: \(\dfrac{1}{2}x^2y^3-\dfrac{1}{3}x^2y\cdot y^2=\dfrac{1}{2}x^2y^3-\dfrac{1}{3}x^2y^3=\dfrac{1}{6}x^2y^3\)
5: \(3xy\cdot\left(x^2y\right)-\dfrac{5}{6}x^3y^2=3x^3y^2-\dfrac{5}{6}x^3y^2=\dfrac{13}{6}x^3y^2\)
6: \(\dfrac{3}{4}x^4y-\dfrac{1}{6}xy\cdot x^3=\dfrac{3}{4}x^4y-\dfrac{1}{6}x^4y=x^4y\left(\dfrac{3}{4}-\dfrac{1}{6}\right)=\dfrac{7}{12}x^4y\)
7: \(\dfrac{4}{5}x^5y^2-x^3\cdot x^2y^2=\dfrac{4}{5}x^5y^2-x^5y^2=-\dfrac{1}{5}x^5y^2\)
8: \(-xy^3-\dfrac{2}{7}\cdot y^2\cdot xy=-xy^3-\dfrac{2}{7}xy^3=-\dfrac{9}{7}xy^3\)
9: \(\dfrac{5}{6}xy^2z-\dfrac{1}{4}xyz\cdot y=\dfrac{5}{6}xy^2z-\dfrac{1}{4}xy^2z=xyz^2\left(\dfrac{5}{6}-\dfrac{1}{4}\right)=\dfrac{7}{12}xyz^2\)
10:
\(15x^4+7x^4-20x^2\cdot x^2=22x^4-20x^4=2x^4\)
11:
\(\dfrac{1}{2}x^5y-\dfrac{3}{4}x^5y+xy\cdot x^4\)
\(=\dfrac{1}{2}x^5y-\dfrac{3}{4}x^5y+x^5y\)
\(=x^5y\left(\dfrac{1}{2}-\dfrac{3}{4}+1\right)=\dfrac{3}{4}x^5y\)
12: \(13x^2y^5-2x^2y^5+x^6=x^2y^5\left(13-2\right)+x^6=x^6+11x^2y^5\)