Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)
\(=\dfrac{x^2+3x+1}{x+1}\)
2.
\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)
Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)
Bài 4:
a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:
$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$
$\frac{DB}{DC}=\frac{D'B'}{D'C}$
$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$
$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$
Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$
Xét tam giác $ABD$ và $A'B'D'$ có:
$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$
$\frac{AB}{A'B'}=\frac{BD}{B'D'}$
$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)
b.
Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$
$\Rightarrow AD.B'C'=BC.A'D'$
Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)
Gọi biểu thức cần tìm GTNN là P, ta có:
\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)
\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)
1) $-xyz^2-3xz.yz=-xyz^2-3xyz^2=-4xyz^2$
2) $-8x^2y-x.(xy)=-8x^2y-x^2y=-9x^2y$
3) $4xy^2.x-(-12x^2y^2)=4x^2y^2+12x^2y^2=16x^2y^2$
4) $\frac12 x^2y^3-\frac13 x^2y.y^2=\frac12 x^2y^3-\frac13 x^2y^3=\frac16 x^2y^3$
5) $3xy.(x^2y)-\frac56 x^3y^2=3x^3y^2-\frac56 x^3y^2=\frac{13}{6}x^3y^2$
6) $\frac34 x^4y-\frac16 xy.x^3=\frac34 x^4y-\frac16 x^4y=\frac{7}{12}x^4y$
7) $\frac45y^2x^5-x^3.x^2y^2=\frac45 x^5y^2-x^5y^2=-\frac15 x^5y^2$
8) $-xy^3-\frac27 y^2.xy=-xy^3-\frac27 xy^3==\frac97 xy^3$
9) $\frac56 xy^2z-\frac14 xyz.y=\frac56 xy^2z-\frac14 xy^2z=\frac{7}{12} xy^2z$
10) $15x^4+7x^4-20x^2.x^2$
$=22x^4-20x^4=2x^4$
11) $\frac12 x^5y-\frac34 x^5y+xy.x^4$
$=-\frac14 x^5y+x^5y=\frac34 x^5y$
12) $13x^2y^5-2x^2y^5+x^6$
$=11x^2y^5+x^6$
Bài 10:
1: \(-xyz^2-3xz\cdot yz=-xyz^2-3xyz^2=-4xyz^2\)
2: \(-8x^2y-x\cdot xy=-8x^2y-x^2y=-9x^2y\)
3: \(4xy^2\cdot x-\left(-12x^2y^2\right)=4x^2y^2+12x^2y^2=16x^2y^2\)
4: \(\dfrac{1}{2}x^2y^3-\dfrac{1}{3}x^2y\cdot y^2=\dfrac{1}{2}x^2y^3-\dfrac{1}{3}x^2y^3=\dfrac{1}{6}x^2y^3\)
5: \(3xy\cdot\left(x^2y\right)-\dfrac{5}{6}x^3y^2=3x^3y^2-\dfrac{5}{6}x^3y^2=\dfrac{13}{6}x^3y^2\)
6: \(\dfrac{3}{4}x^4y-\dfrac{1}{6}xy\cdot x^3=\dfrac{3}{4}x^4y-\dfrac{1}{6}x^4y=x^4y\left(\dfrac{3}{4}-\dfrac{1}{6}\right)=\dfrac{7}{12}x^4y\)
7: \(\dfrac{4}{5}x^5y^2-x^3\cdot x^2y^2=\dfrac{4}{5}x^5y^2-x^5y^2=-\dfrac{1}{5}x^5y^2\)
8: \(-xy^3-\dfrac{2}{7}\cdot y^2\cdot xy=-xy^3-\dfrac{2}{7}xy^3=-\dfrac{9}{7}xy^3\)
9: \(\dfrac{5}{6}xy^2z-\dfrac{1}{4}xyz\cdot y=\dfrac{5}{6}xy^2z-\dfrac{1}{4}xy^2z=xyz^2\left(\dfrac{5}{6}-\dfrac{1}{4}\right)=\dfrac{7}{12}xyz^2\)
10:
\(15x^4+7x^4-20x^2\cdot x^2=22x^4-20x^4=2x^4\)
11:
\(\dfrac{1}{2}x^5y-\dfrac{3}{4}x^5y+xy\cdot x^4\)
\(=\dfrac{1}{2}x^5y-\dfrac{3}{4}x^5y+x^5y\)
\(=x^5y\left(\dfrac{1}{2}-\dfrac{3}{4}+1\right)=\dfrac{3}{4}x^5y\)
12: \(13x^2y^5-2x^2y^5+x^6=x^2y^5\left(13-2\right)+x^6=x^6+11x^2y^5\)