Rút gọn
`(2√3-√6)/(√8-2)``-``√216/3`
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\left(\sqrt{6}+\sqrt{10}\right)\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
=5-3=2
\(B=\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(B=\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(B=\left|\sqrt{5}+2\right|+\left|\sqrt{5}-2\right|\)
\(B=\sqrt{5}+2+\sqrt{5}-2\)
\(B=2\sqrt{5}\)
\(A=\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}\)
\(A=\left(\dfrac{\sqrt{12}-\sqrt{6}}{2\sqrt{2}-2}-\dfrac{6\sqrt{6}}{3}\right).\dfrac{1}{\sqrt{6}}\)
\(A=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)
\(A=\left(\sqrt{6}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)
\(A=-\sqrt{6}.\dfrac{1}{\sqrt{6}}\)
\(A=-1\)
\(P=\dfrac{4\cdot36^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{4\cdot\left(2^2\cdot3^2\right)^4-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
`(3^9. 3^20. 2^8)/(3^24. 243. 2^6)`
`=(3^29. 2^8)/(3^24. 3^5. 2^6)`
`=(3^29. 2^8)/(3^29. 2^6)`
`=2^2=4`
\(\sqrt{8-4\sqrt{3}}=\sqrt{6-2.\sqrt{6}.\sqrt{2}+2}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)
\(\sqrt{9-6\sqrt{2}}=\sqrt{6-2\sqrt{6}.\sqrt{3}+3}=\sqrt{\left(\sqrt{6}-\sqrt{3}\right)^2}=\left|\sqrt{6}-\sqrt{3}\right|=\sqrt{6}-\sqrt{3}\)
\(\sqrt{8-4\sqrt{3}}=\sqrt{6}-\sqrt{2}\)
\(\sqrt{9-6\sqrt{2}}=\sqrt{6}-\sqrt{3}\)
sửa đề \(\dfrac{3x^2+6x+12}{x^3-8}=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)ĐK : x \(\ne\) 2
\(\dfrac{3x^2+6x+12}{x^3-8}=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)
\(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\sqrt{\dfrac{216}{3}}\)
\(=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\sqrt{72}\)
\(=\dfrac{\sqrt{6}}{2}-6\sqrt{2}=\dfrac{\sqrt{6}-12}{2}\)