K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 7 2021

\(\sqrt{8-4\sqrt{3}}=\sqrt{6-2.\sqrt{6}.\sqrt{2}+2}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)

\(\sqrt{9-6\sqrt{2}}=\sqrt{6-2\sqrt{6}.\sqrt{3}+3}=\sqrt{\left(\sqrt{6}-\sqrt{3}\right)^2}=\left|\sqrt{6}-\sqrt{3}\right|=\sqrt{6}-\sqrt{3}\)

\(\sqrt{8-4\sqrt{3}}=\sqrt{6}-\sqrt{2}\)

\(\sqrt{9-6\sqrt{2}}=\sqrt{6}-\sqrt{3}\)

5 tháng 8 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

24 tháng 6 2021

`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`

`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`

`=root{3}{4(1-sqrt3)(1+sqrt3)}`

`=root{3}{4(1-3)}=-2`

`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`

`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`

`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`

`=root{3}{9}`

24 tháng 6 2021

`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`

`=root{3}{(8sqrt5-16)(8sqrt5+16)}`

`=root{3}{320-256}`

`=root{3}{64}=4`

`b)root{3}{7-5sqrt2}-root{6}{8}`

`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`

`=root{3}{(1-sqrt2)^3}-sqrt2`

`=1-sqrt2-sqrt2=1-2sqrt2`

 

20 tháng 9 2017

23 tháng 6 2016

Hihi mình cũng học lớp 9, để mình giúp cậu nha!

a) \(\sqrt{3-2\sqrt{2}}+\sqrt{9+4\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(1+\sqrt{8}\right)^2}\)

\(=\left|\sqrt{2}-1\right|+\left|1+\sqrt{8}\right|=\sqrt{2}-1+1+\sqrt{8}=\sqrt{2}+2\sqrt{2}=3\sqrt{2}\)

b) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(1+\sqrt{7}\right)^2}\)

\(=\left|\sqrt{7}-1\right|-\left|1+\sqrt{7}\right|=\sqrt{7}-1-1-\sqrt{7}=-2\)

c) \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{2}+3\right|-\left|3-\sqrt{2}\right|=\sqrt{2}+3-3+\sqrt{2}=2\sqrt{2}\)

(Nhớ click cho mình với nhoa!)

Ta có: \(A=\left(\sqrt{6}+\sqrt{10}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

=5-3=2

10 tháng 9 2023

\(B=\left(\dfrac{3\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{x-9}{\sqrt{x}-3}\left(x\ge0;x\ne4;x\ne9\right)\)

\(=\left[\dfrac{3\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]\cdot\dfrac{\sqrt{x}-3}{x-9}\)

\(=\dfrac{3\sqrt{x}+6+x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x+5\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{x+2\sqrt{x}+3\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{1}{\sqrt{x}-2}\)

#\(Toru\)

17 tháng 7 2023

1) \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=\left|2+\sqrt{5}\right|-\left|2-\sqrt{5}\right|\)

\(=2+\sqrt{5}+2-\sqrt{5}\)

\(=4\)

2) \(\sqrt{12-6\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)

\(=\sqrt{3^2-2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{3^2+2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)

\(=\left|3-\sqrt{3}\right|+\left|3+\sqrt{3}\right|\)

\(=3-\sqrt{3}+3+\sqrt{3}\)

\(=6\)