a+1=99
tìm a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Số số hạng là (99-1):1+1=99(số)
Tổng là \(\dfrac{99\cdot\left(99+1\right)}{2}=99\cdot50=4950\)
1:
3*A=1*2*3+2*3*(4-1)+3*4*(5-2)+...+n(n+1)[(n+2)-(n-1)]
=1*2*3-1*2*3+2*3*4-2*3*4+...-(n-1)*n*(n+1)+n(n+1)(n+2)
=n(n+1)*(n+2)
=>\(A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
Giải:
\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{x.\left(x+2\right)}=\dfrac{16}{99}\)
\(\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{x.\left(x+2\right)}\right)=\dfrac{16}{99}\)
\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{16}{99}\)
\(\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{x+2}\right)=\dfrac{16}{99}\)
\(\dfrac{1}{3}-\dfrac{1}{x+2}=\dfrac{16}{99}:\dfrac{1}{2}\)
\(\dfrac{1}{3}-\dfrac{1}{x+2}=\dfrac{32}{99}\)
\(\dfrac{1}{x+2}=\dfrac{1}{3}-\dfrac{32}{99}\)
\(\dfrac{1}{x+2}=\dfrac{1}{99}\)
\(\Rightarrow x+2=99\)
\(x=99-2\)
\(x=97\)
Chúc em học tốt!
\(\dfrac{1}{3x5}+\dfrac{1}{5x7}+\dfrac{1}{7x9}+...+\dfrac{1}{x\left(x+2\right)}=\dfrac{16}{99}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{3x5}+\dfrac{2}{5x7}+...+\dfrac{2}{x\left(x+2\right)}\right)=\dfrac{16}{99}\)
\(=\dfrac{2}{3x5}\)\(+\dfrac{2}{5x7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{32}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}+.....+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{32}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{x+2}=\dfrac{32}{99}=>x=97\)
a, đề phải là 1/a.(a+1) = 1/a - 1/a+1 chứ bạn !
Có : 1/a.(a+1) = (a+1)-a/a.(a+1) = a+1/a.(a+1) - a/a.(a+1) = 1/a - 1/a+1
=> 1/a.(a+1) = 1/a - 1/a+1
b, Có : 2/a.(a+1).(a+2) = (a+2)-a/a.(a+1).(a+2) = a+2/a.(a+1).(a+2) - a/a.(a+1).(a+2) = 1/a.(a+1) - 1/(a+1).(a+2)
=> 2/a.(a+1).(a+2) = 1/a.(a+1) - 1/(a+1).(a+2)
Tk mk nha
a, \(VP=\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}==\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}=VT\)
b, \(VP=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2-a}{a\left(a+1\right)\left(a+2\right)}=\frac{2}{a\left(a+1\right)\left(a+2\right)}=VT\)
\(B=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\dfrac{\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\)
\(=2+\dfrac{1}{\sqrt{a}}\cdot\dfrac{2a+2}{\sqrt{a}+1}\)
\(=\dfrac{2a+2\sqrt{a}+2a+2}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{4a+2\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}+1\right)}\)
a=99-1
a=98
a + 1 = 99
a = 99 - 1
a = 98