K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
23 tháng 6

\(\dfrac{x+2022}{2020}+\dfrac{x-2016}{2018}=\dfrac{x+2021}{2019}+\dfrac{x-2019}{2021}\\ \Rightarrow\left(\dfrac{x+2022}{2020}-1\right)+\left(\dfrac{x-2016}{2018}+1\right)=\left(\dfrac{x+2021}{2019}-1\right)+\left(\dfrac{x-2019}{2021}+1\right)\\ \Rightarrow\dfrac{x+2}{2020}+\dfrac{x+2}{2018}-\dfrac{x+2}{2019}-\dfrac{x+2}{2021}=0\\ \Rightarrow\left(x+2\right)\left(\dfrac{1}{2020}+\dfrac{1}{2018}-\dfrac{1}{2019}-\dfrac{1}{2021}\right)=0\\ \)

\(\Rightarrow x+2=0\) ( Vì: \(\dfrac{1}{2020}+\dfrac{1}{2018}-\dfrac{1}{2019}-\dfrac{1}{2021}>0\) )

\(\Rightarrow x=-2\)

13 tháng 6 2020

\(\left(1-\frac{1}{2018}\right)\times\left(1-\frac{1}{2019}\right)\times\left(1-\frac{1}{2020}\right)\times\left(1-\frac{1}{2021}\right)\times\left(1-\frac{1}{2022}\right)\)

\(=\frac{2017}{2018}\times\frac{2018}{2019}\times\frac{2019}{2020}\times\frac{2020}{2021}\times\frac{2021}{2022}\)

\(=\frac{2017}{2022}\)

4 tháng 1

2011+2012+2013+2014+2015+2016+2017+2018+2019+2020+2021+ 2022+2023                                                                                                 =(2011+2023)+(2013+2022)+...+(2016+2018)+2017                               =4034+4034+4034+4034+4034+4034+2017                                           =4034x6+2017=26221

2011+2012+2013+2014+2015+2016+2017+2018+2019+2020+2021+2022+2023                                                                                                

=(2011+2023)+(2013+2022)+...+(2016+2018)+2017                               =4034+4034+4034+4034+4034+4034+2017                                           =4034x6+2017=26221

28 tháng 1

A = 2021/2022+2020/2021+2019/2020+2018/2019+2017/2018

A<2022/2022+2021/2021+2020/2020+2019/2019+2018/2018

A<1+1+1+1+1

A<5

25 tháng 2 2023

\(\dfrac{x-4}{2022}+\dfrac{x-3}{2021}+\dfrac{x-2}{2020}+\dfrac{x-1}{2019}\text{=}-4\)

\(\dfrac{x-4}{2022}+\dfrac{x-3}{2021}+\dfrac{x-2}{2020}+\dfrac{x-1}{2019}+4\text{=}0\)

\(\left(\dfrac{x-4}{2022}+1\right)+\left(\dfrac{x-3}{2021}+1\right)+\left(\dfrac{x-2}{2020}+1\right)+\left(\dfrac{x-1}{2019}+1\right)\text{=}0\)

\(\dfrac{x-2018}{2022}+\dfrac{x-2018}{2021}+\dfrac{x-2018}{2020}+\dfrac{x-2018}{2019}\text{=}0\)

\(\left(x-2018\right)\left(\dfrac{1}{2022}+\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}\right)\text{=}0\)

\(Do:\) \(\dfrac{1}{2022}+\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}\ne0\)

\(x-2018\text{=}0\)

\(x\text{=}2018\)

\(Vậy...\)

Ta có: \(f\left(2019\right)=2020=2019+1\)          \(f\left(2020\right)=2021=2020+1\)Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là số...
Đọc tiếp

Ta có: \(f\left(2019\right)=2020=2019+1\)

          \(f\left(2020\right)=2021=2020+1\)

Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)

\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là số nguyên

\(\Rightarrow g\left(x\right)=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)\)(\(a\in\)Z*)

\(\Rightarrow f\left(x\right)=g\left(x\right)-h\left(x\right)\)

               \(=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)+x+1\)

\(f\left(2021\right)=a\left(2021-2019\right)\left(2021-2020\right)\left(2021-x_0\right)+2021+1\)

                    \(=a.1.2\left(2021-x_0\right)+2022\)

\(f\left(2018\right)=a\left(2018-2019\right)\left(2018-2020\right)\left(2018-x_0\right)+2018+1\)

                      \(=a.1.2.\left(2018-x_0\right)+2019\)

\(\Rightarrow f\left(2021\right)-f\left(2018\right)=a.1.2\left(2021-2018\right)+3\)

                                                     \(=6a+3\)

Làm nốt

 

3
31 tháng 10 2019

Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:

\(f\left(2019\right)=2020;f\left(2020\right)=2021\)

CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số

31 tháng 10 2019

Cho xin cái đề ạ

\(A=2018\times2020+2021\) và \(B=2019\times2019+2021\)

\(A=2018\times2019+2018+2021\)

\(B=2018\times2019+2019+2021\)

Vì \(2019>2018\Rightarrow A< B\)

3 tháng 9 2020

Ta có :

2018 x 2020 = 2018 x ( 2019 + 1 ) = 2018 + 2018 x 2019 < 2019 + 2018 x 2019 = 2019 x ( 2018 + 1 )

= 2019 x 2019

=> 2018 x 2020 < 2019 x 2019

=> 2018 x 2020 + 2021 < 2019 x 2019 + 2021

=> A < B

Tham khảo:

loading...