Cho \(x\in\) Z và -2014<x<2016
a) Viết tập hợp các số nguyên x?
b)Tính tổng các số nguyên x?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu này mik vừa làm sáng ngày ne
ta đặt \(\sqrt{x^2-2014}=a;\sqrt{y^2-2014}=b;\sqrt{z^2-2014}=c\)
ta có \(ab+bc+ca=2014\Rightarrow ab+bc+ca+a^2=x^2-2014+2014=x^2\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)=x^2\)
tương tự ta có \(\left(b+c\right)\left(b+a\right)=y^2;\left(c+a\right)\left(c+b\right)=z^2\)
nhân cả 3 vào ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=xyz\)
=> \(\hept{\begin{cases}\left(a+b\right)z^2=xyz\\\left(b+c\right)x^2=xyz\\\left(c+a\right)y^2=xyz\end{cases}\Rightarrow\hept{\begin{cases}a+b=\frac{xy}{z}\\b+c=\frac{yz}{x}\\c+a=\frac{zx}{y}\end{cases}}}\)
cậu nhân tung A ra rồi thay \(\frac{xy}{z};\frac{yz}{x};\frac{zx}{y}\) như vừa tính vào thì cậu sẽ ra kết quả là A=4028
Lời giải:
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2014}=\frac{1}{x+y+z}$
$\Leftrightarrow \frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0$
$\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0$
$\Leftrightarrow (x+y)(\frac{1}{xy}+\frac{1}{z(x+y+z)})=0$
$\Leftrihgtarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0$
$\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0$
$\Rightarrow (x+y)(y+z)(x+z)=0$
$\Leftrightarrow (2014-x)(2014-y)(2014-z)=0$
$\Leftrightarrow 2014-x=0$ hoặc $2014-y=0$ hoặc $2014-z=0$
$\Leftrightarrow x=2014$ hoặc $y=2014$ hoặc $z=2014$
Từ gt => 2(x^2+y^2+z^2)=2(xy+yz+xz)
<=> (x-y)^2 + (y-z)^2 + (z-x)^2=0
<=> x=y=z
=> 3x^2014=3
=>x=y=z=1
=>P= 1^25+1^4+1^2015 = 3
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2014}=a\left(a\ge0\right)\\\sqrt{y^2-2014}=b\left(b\ge0\right)\\\sqrt{z^2-2014}=c\left(c\ge0\right)\end{matrix}\right.\)
\(\Rightarrow ab+bc+ca=2014\)
Ta có: \(\sqrt{x^2-2014}=a\)
\(\Leftrightarrow x^2-2014=a^2\)
\(\Rightarrow x^2=a^2+2014=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
Tương tự, ta có:
\(y^2=\left(b+c\right)\left(b+a\right)\)
\(z^2=\left(c+a\right)\left(c+b\right)\)
Xét \(A=xyz\left(\dfrac{\sqrt{x^2-2014}}{x^2}+\dfrac{\sqrt{y^2-2014}}{y^2}+\dfrac{\sqrt{z^2-2014}}{z^2}\right)\)
\(=\sqrt{\left(a+b\right)\left(a+c\right)}\times\sqrt{\left(b+c\right)\left(b+c\right)}\times\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\times\left[\dfrac{a}{\left(a+b\right)\left(a+c\right)}+\dfrac{b}{\left(b+c\right)\left(b+a\right)}+\dfrac{c}{\left(c+a\right)\left(c+b\right)}\right]\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\times\dfrac{a\left(b+c\right)\times b\left(c+a\right)\times c\left(b+a\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=2\left(ab+bc+ac\right)=4028\)
bạn ko nên trả lời quá nhiều cùng 1 câu hỏi mà kết quả trả lời giống nhau.
x \(\in\){-2014; -2013; -2012; ........; 2015}
Tổng của các số nguyên x là:
-2014 + (-2013) + (-2012) +.........+ 2015
= [(-2014) + 2014] + [(-2013) + 2013] +............+[(-1)+1] +2015
= 0+0+0+.....+0+2015
= 2015
x \(\in\) 2 là sao hả bạn ?