Tìm Min của A = (x+1)(x+2)(x+3)(x+4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-1)(x+2)(x+3)(x+6)
= [(x-1)(x+6)].[(x+2)(x+3)]
=(x^2+5x-6)(x^2+5x+6)
=(x^2+5x)^2 -6^2 = (x^2+5x)^2 -36
vì (x^2+5x)^2 > hoặc bằng 0 => (x-1)(x+2)(x+3)(x+6) > hoặc bằng -36.
Dấu bằng xảy ra khi (x^2+5x)^2=0 <=> x=0 hoặc x= -5
D=(|x-1|+|4-x|)+(|x-2|+|3-x|)
Áp dụng bđt GTTĐ |A|+|B|\(\ge\)|A+B| ta có:
\(\left|x-1\right|+\left|4-x\right|\ge3\)Dấu = xảy ra \(\Leftrightarrow\left(x-1\right).\left(4-x\right)\ge0\Rightarrow1\le x\le4\)(1)
\(\left|x-2\right|+\left|3-x\right|\ge1\)Dấu = xảy ra \(\Leftrightarrow\left(x-2\right).\left(3-x\right)\ge0\Rightarrow2\le x\le3\)(2)
Dấu = xảy ra khi dấu = ở (1);(2) đồng thời xảy ra \(\Rightarrow2\le x\le3\)
MinD=4\(\Leftrightarrow2\le x\le3\)
:D hok tốt
(x-1)(x+2)(x+3)(x+6)
=[(x-1)(x+4)][(x+2)(x+3)]
=(x^2+5x-4)(x^2+5x+4)
=(x^2+5x)^2-36>=-36
=>min=-36<=>x=0 hoặc x=-5
bạn làm sai rồi