K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{1}{2}x+150\%x=2020\)

\(\Leftrightarrow2x=2020\)

hay x=1010

Vậy: x=1010

18 tháng 5 2021

Ta có: \(\dfrac{1}{2}x+150\%x=2020\)

\(\Leftrightarrow\dfrac{1}{2}x+\dfrac{3}{2}x=2020\)

\(\Leftrightarrow\dfrac{4}{2}x=2020\)

\(\Leftrightarrow2x=2020\)

\(\Leftrightarrow x=1010\)

Vậy x=1010

6 tháng 6 2020

câu c mình không chắc là do đề hay là do mình chưa từng gặp dạng này

AH
Akai Haruma
Giáo viên
25 tháng 7 2023

Có viết sai đề không vậy bạn?

2 tháng 11 2021

Bài 1:

a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)

\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)

b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)

d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)

e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)

Bài 2:

a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

21 tháng 10 2020

Đk: \(\forall x\in R\)

Ta có:\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)

<=> \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=\sqrt{1+2020^2+2.2020+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(1+2020\right)^2+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\frac{2021^2-2020}{2021}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=2021\)

Lập bảng xét dầu

x                   -2                   1 

x - 1   -         |           -          0       +

x + 2   -        0         +          |            -

Xét các TH xảy ra :

TH1: x \(\le\)-2 => pt trở thành: 1 - x - x - 2 = 2021

<=> -2x = 2022 <=> x = -1011 (tm)

TH2: \(-2< x\le1\) => pt trở thành: 1 - x + x + 2 = 2021

<=> 0x = 2018 (vô lí) => pt vô nghiệm

TH3: \(x>1\) => pt trở thành: x - 1 + x + 2 = 2021

<=> 2x = 2020 <=> x = 1010 (tm)

Vậy S = {-1011; 1010}

AH
Akai Haruma
Giáo viên
9 tháng 4 2023

Lời giải:

$2^x+2^{x+1}+2^{x+2}+...+2^{x+2020}=2^{2024}-8$

$2^x(1+2+2^2+...+2^{2020})=2^{2024}-8(1)$

$2^x(2+2^2+2^3+...+2^{2021})=2^{2025}-16(2)$

Lấy $(2)$ trừ $(1)$ ta có:

$2^x(2^{2021}-1)=2^{2025}-16-(2^{2024}-8)=2^{2024}(2-1)-8$

$2^x(2^{2021}-1)=2^{2024}-8=2^3(2^{2021}-1)$

$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
 

Ta có: \(\left(2x-1\right)^{2020}\ge0\forall x\)

\(\left(y-\frac{2}{5}\right)^{2020}\ge0\forall y\)

Do đó: \(\left(2x-1\right)^{2020}+\left(y-\frac{2}{5}\right)^{2020}\ge0\forall x,y\)

\(\left(2x-1\right)^{2020}+\left(y-\frac{2}{5}\right)^{2020}=0\)

nên \(\left\{{}\begin{matrix}\left(2x-1\right)^{2020}=0\\\left(y-\frac{2}{5}\right)^{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-\frac{2}{5}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\y=\frac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{2}{5}\end{matrix}\right.\)

Vậy: \(x=\frac{1}{2}\); \(y=\frac{2}{5}\)