Tìm m để 2 phương mx+7=6 và \(\dfrac{x}{2}\)+m=1 có nghiệm bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(a+b+c=0\) nên pt luôn có 2 nghiệm
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)
Dấu "=" xảy ra khi \(m=1\)
2.
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)
\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)
a: Trường hợp 1: m=0
Pt sẽ là \(6\cdot\left(-2\right)x+4\cdot0-7=0\)
=>-12x-7=0
=>x=-7/12(nhận)
Trường hợp 2: m<>0
\(\Delta=\left(6m-12\right)^2-4m\left(4m-7\right)\)
\(=36m^2-144m+144-16m^2+28m\)
\(=20m^2-116m+144\)
Để phương trình có nghiệm thì \(20m^2-116m+144>=0\)
Đặt \(20m^2-116m+144=0\)
\(\Delta=\left(-116\right)^2-4\cdot20\cdot144=1936\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=4\\m_2=\dfrac{9}{5}\end{matrix}\right.\)
Do đó: Bất phương trình xảy ra khi m<=9/5 hoặc m>=4
Vậy: m<=9/5 hoặc m>=4
b: Trường hợp 1: m=0
Pt sẽ là 1=0(vô lý)
Trường hợp 2: m=1
Pt sẽ là 2x+1=0
hay x=-1/2(nhận)
Trường hợp 3: m khác 0 và m khác 1
\(\Delta=\left(2m\right)^2-4\left(m^2-m\right)=4m^2-4m^2+4m=4m\)
Để phương trình có nghiệm thì 4m>0
hay m>0
Vậy: m>0
1: Khi m=3 thì hệ phương trình (1) trở thành:
\(\left\{{}\begin{matrix}3x-2y=-1\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{13}\\y=\dfrac{5}{13}\end{matrix}\right.\)
2: Khi x=-1/2 và y=2/3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}2\cdot\dfrac{-1}{2}+3\cdot\dfrac{2}{3}=1\\-\dfrac{1}{2}m-\dfrac{4}{3}=-1\end{matrix}\right.\Leftrightarrow m\cdot\dfrac{-1}{2}=\dfrac{1}{3}\)
hay m=-2/3
b: Thay x=-5 vào pt, ta được:
\(m+25+65=0\)
hay m=-90
Theo đề, ta có: \(x_1+x_2=13\)
nên \(x_2=18\)
c: Thay x=-3 vào pt, ta được:
\(18+3\left(m+4\right)+m=0\)
=>4m+30=0
hay m=-15/2
Theo đề, ta có: \(x_1\cdot x_2=-\dfrac{m}{2}=\dfrac{15}{4}\)
hay \(x_2=-1.25\)
\(\Leftrightarrow\dfrac{mx^2-5x+m-4}{mx^2-4x+m-3}>0\)
BPT đã cho có tập nghiệm là R khi và chỉ khi:
\(\left\{{}\begin{matrix}\Delta_1=25-4m\left(m-4\right)< 0\\\Delta'_2=4-m\left(m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4m^2+16m+25< 0\\-m^2+3m+4< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< \dfrac{4-\sqrt{41}}{2}\\m>\dfrac{4+\sqrt{41}}{2}\end{matrix}\right.\)
2.
b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)
\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)
Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)
\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)
\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)
Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)
Vậy \(m\in\left(-2;4\right)\)
2.
a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow m>5\)
Đặt \(\dfrac{\pi}{3}+mx=t\Rightarrow mx=t-\dfrac{\pi}{3}\)
\(\Rightarrow\dfrac{\pi}{6}-mx=\dfrac{\pi}{6}-\left(t-\dfrac{\pi}{3}\right)=\dfrac{\pi}{2}-t\)
Pt trở thành:
\(cos^2t+4cos\left(\dfrac{\pi}{2}-t\right)=4\)
\(\Leftrightarrow1-sin^2t+4sint=4\)
\(\Leftrightarrow sin^2t-4sint+3=0\Rightarrow\left[{}\begin{matrix}sint=1\\sint=3>1\end{matrix}\right.\)
\(\Rightarrow t=\dfrac{\pi}{2}+k2\pi\)
\(\Rightarrow\dfrac{\pi}{3}+mx=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow mx=\dfrac{\pi}{6}+k2\pi\)
\(\Rightarrow x=\dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)\)
\(0< x< 1\Rightarrow0< \dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)< 1\Rightarrow-\dfrac{1}{12}< k< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\) (1)
Pt có 4 nghiệm pb trên đoạn đã cho khi có 4 giá trị k nguyên thỏa mãn (1)
\(\Rightarrow k=\left\{0;1;2;3\right\}\)
\(\Rightarrow3< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\le4\)
\(\Rightarrow\dfrac{37\pi}{6}< m\le\dfrac{49\pi}{6}\)
Nghiệm trên \(\left(0;\pi\right)\) hay (0;1) nhỉ?
Thực ra 2 cái này cũng ko khác gì nhau về mặt pp giải toán nhưng mà \(\left(0;\pi\right)\) thì tính toán đẹp hơn \(\left(0;1\right)\) nhiều
Có \(x^2-x+1>0;\forall x\)
\(-9< \dfrac{3x^2-mx-6}{x^2-x+1}< 6\) nghiệm đúng với mọi x
\(\Leftrightarrow-9\left(x^2-x+1\right)< 3x^2-mx-6< 6\left(x^2-x+1\right)\) nghiệm đúng với mọi x
\(\Leftrightarrow12x^2-x\left(m+9\right)+3>0\) (1) nghiệm đúng với mọi x và \(3x^2+x\left(m-6\right)+12>0\) (2) nghiệm đúng với mọi x
Từ (1) \(\Leftrightarrow\left\{{}\begin{matrix}a=12>0\left(lđ\right)\\\Delta< 0\end{matrix}\right.\)\(\Leftrightarrow m^2+18m-63< 0\) \(\Leftrightarrow m\in\left(-21;3\right)\)
Từ (2)\(\Leftrightarrow\left\{{}\begin{matrix}a=3>0\left(lđ\right)\\\Delta< 0\end{matrix}\right.\)\(\Leftrightarrow m^2-12m-108< 0\)\(\Leftrightarrow m\in\left(-6;18\right)\)
Kết hợp (1) và (2) \(\Rightarrow m\in\left(-6;3\right)\)
\(\Delta=\left(5m-2\right)^2-4m\left(2m+10\right)=17m^2-60m+4\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5m-2}{m}\\x_1x_2=\dfrac{2m+10}{m}\end{matrix}\right.\)
a.
Phương trình có 2 nghiệm đối nhau
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\m\ne0\\x_1+x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}17m^2-60m+4>0\left(1\right)\\m\ne0\\\dfrac{5m-2}{m}=0\end{matrix}\right.\)
Từ \(\dfrac{5m-2}{m}=0\Rightarrow5m-2=0\Rightarrow m=\dfrac{2}{5}\)
Thế vào (1) kiểm tra thấy ko thỏa mãn.
Vậy ko tồn tại m thỏa mãn yêu cầu
b.
Pt có 2 nghiệm là nghịch đảo của nhau khi:
\(\left\{{}\begin{matrix}\Delta>0\\m\ne0\\x_1x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}17m^2-60m+4>0\\m\ne0\\\dfrac{2m+10}{m}=1\end{matrix}\right.\)
Từ \(\dfrac{2m+10}{m}=1\Rightarrow2m+10=m\)
\(\Rightarrow m=10\)
Thế vào \(17m^2-60m+4>0\) kiểm tra thấy thỏa mãn
Vậy \(m=10\)
Ta có: \(mx+7=6\) (1) (m ≠ 0)
\(\Leftrightarrow mx=-1\)
\(\Leftrightarrow x=\frac{-1}{m}\)
Lại có: \(\frac{x}{2}+m=1\) (2)
\(\Leftrightarrow \frac{x}{2}=1-m\)
\(\Leftrightarrow x=2-2m\)
Để 2 phương trình (1) và (2) có nghiệm bằng nhau thì:
\(\frac{-1}{m}=2-2m\\\Leftrightarrow2m-2-\frac{1}{m}=0\\\Leftrightarrow 2m^2-2m-1=0(\text{vì }m\ne0)\\\Leftrightarrow \left[\begin{array}{} m=\frac{1+\sqrt3}{2}(tmdk)\\ m=\frac{1-\sqrt3}{2}(tmdk) \end{array} \right. \)
$\text{#}Toru$
Ta có pt(1):
\(mx+7=6\left(m\ne0\right)\)
\(\Leftrightarrow mx=6-7=-1\)
\(\Leftrightarrow x=-\dfrac{1}{m}\)
Pt(2) \(\dfrac{x}{2}+m=1\)
\(\Leftrightarrow\dfrac{x}{2}=1-m\)
\(\Leftrightarrow x=2\left(1-m\right)=2-2m\)
Vì 2 phương trình có nghiệm bằng nhau nên:
\(-\dfrac{1}{m}=2-2m\)
\(\Leftrightarrow-1=m\left(2-2m\right)\)
\(\Leftrightarrow-1=2m-2m^2\)
\(\Leftrightarrow2m^2-2m-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1+\sqrt{3}}{2}\\m=\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\left(tm\right)\)
Vậy: ...