K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6

ABCD là hình vuông nên OA=OC => d( A,(SBD) ) = d( C,(SBD) )

Kẻ AH vuông SO

BD vuông AO, BD vuông SA nên BD vuông (SAO) => BD vuông AH

=> AH vuông (SBD)

=> d( A,(SBD) ) = AH

Xét SAO : \(\dfrac{1}{AH^2}\) = \(\dfrac{1}{SA^2}\) + \(\dfrac{1}{AO^2}\)

SA = 3a, AO = \(a\sqrt{2}\)      => AH =  \(\dfrac{3a\sqrt{22}}{11}\) 

Vậy khoảng cách từ C đến (SBD) = \(\dfrac{3a\sqrt{22}}{11}\)

27 tháng 4 2021

undefined

NV
4 tháng 5 2021

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)

Từ A kẻ \(AH\perp SO\Rightarrow AH\perp\left(SBD\right)\)

\(\Rightarrow AH=d\left(A;\left(SBD\right)\right)\)

\(AC=a\sqrt{2}\Rightarrow AO=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\)

Hệ thức lượng: \(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AO^2}\Rightarrow AH=\dfrac{SA.AO}{\sqrt{SA^2+AO^2}}=\dfrac{a\sqrt{21}}{7}\)

3 tháng 9 2019

Đáp án là C

Ta có:  

theo giao tuyến SD.

Trong (SAD) kẻ AH ⊥ DS

Ta có 

Theo bài 

Vì tứ diện SABD có ba cạnh AS, AB, AD đôi một vuông góc nên

Do đó tam giác SAD vuông cân tại A có: 

12 tháng 6 2018

Đáp án là C

11 tháng 5 2022

undefined

11 tháng 5 2022

Tuy nhiên đề cho giá trị cạnh AC với BC bị sai. Cạnh huyền AC (\(a\sqrt{3}\)) sao lại có giá trị nhỏ hơn cạnh góc vuông BC (2a) nhỉ?

14 tháng 5 2022

????

a: SO vuông góc (ABCD)

=>(SAC) vuông góc (ABCD)

SO vuông góc (ABCD)

=>(SBD) vuông góc (ABCD)

b: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

d: (SB;(ABCD))=(BS;BO)=góc SBO

cos SBO=OB/SB=a*căn 2/2/(a*căn 2)=1/2

=>góc SBO=60 độ

16 tháng 7 2018