Chứng minh x^4+x^3+x^2+x+1>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^6+x^4-x^3+x^2+1>0\)
\(\Leftrightarrow x^6+\left(x^2\right)^2-2\cdot\dfrac{1}{2}x\cdot x^2+\left(\dfrac{1}{2}x\right)^2+\dfrac{3}{4}x^2+1>0\)
\(\Leftrightarrow x^6+\left(x^2-\dfrac{1}{2}x\right)^2+\dfrac{3}{4}x^2+1>0\)(luôn đúng)
=>đpcm
Ta có \(\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+2\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)+2\)
Đặt \(t=x^2-5x+5\)
\(\Leftrightarrow\left(t-1\right)\left(t+1\right)+2\)
\(\Leftrightarrow t^2-1+2\)
\(\Leftrightarrow t^2+1\)
mà \(t^2\ge0\)
\(\Rightarrow t^2+1>0\)
\(\Leftrightarrow\left(x^2-5x+5\right)^2+1>0\)
Vậy biểu thức trên > 0 với mọi x
Ta cso
(x-1)(x-2)(x-3)(x-4)+2
<=> [ (x-1)(x-4)][(x-2)(x-3)] +2
<=> (x2-5x+4)(x2-5x+6)+2
<=> (x2-5x+5-1)(x2-5x+5+1)+2
<=> (x2-5x+5)2-1+2
<=> (x2-5x+5)2+1
Ta thấy (x2-5x+5)2>=0
=> (x2-5x+5)2+1 >1>0(cmđ)
Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+4\right)\left[\left(x^2+5x+4\right)+2\right]+1\)
\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x+4+1\right)^2=\left(x^2+5x+5\right)^2\ge0\forall x\)
Bài 2:
a) Áp dụng BĐT AM - GM ta có:
\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)
\(\ge\dfrac{1}{a+b}\) (Đpcm)
b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:
\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)
\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:
\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)
Bài 1:
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)
Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)
\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)
\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng
x^2 + x + 1
= x^2 + x +1/4 +3/4
= (x+1/2)^2 + 3/4 ≥ 3/4
Vậy x^2 + x + 1 >0 với mọi x
\(x^2\)-\(2x+4\)=\(x^{^{ }2}-2x+1+3\) =\(\left(x-1\right)^2+3\)\(\ge\) 3
a) \(x^2+8x+17=\left(x^2+8x+16\right)+1=\left(x+4\right)^2+1\ge1>0\)
\(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(x^4+x^3+x^2+x+1=\left(x^4+x^3+\frac{1}{4}x^2\right)+\left(\frac{1}{4}x^2+x+1\right)+\frac{1}{2}x^2\)
\(=\left(x^2+\frac{1}{2}x\right)^2+\left(\frac{1}{2}x+1\right)^2+\frac{1}{2}x^2\ge0\) (Do từng hạng tử của đa thức đều \(\ge0\))
Nếu \(x=0\) thì
\(\left(x^2+\frac{1}{2}x\right)^2+\left(\frac{1}{2}x+1\right)^2+\frac{1}{2}x^2=\left(0+\frac{1}{2}.0\right)^2+\left(\frac{1}{2}.0+1^2\right)+\frac{1}{2}.0^2=1>0\)
Do đó \(\left(x^2+\frac{1}{2}x\right)^2+\left(\frac{1}{2}x+1\right)^2+\frac{1}{2}x^2>0\) hay \(x^4+x^3+x^2+x+1>0\)