Tìm số tự nhiên có ba chữ số, biết rằng nếu chuyển vị trí chữ số hàng đơn vị và chữ số hàng trăm thì được số mới có ba chữ số kém số cũ 792 đơn vị.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số cần tìm là $\overline{abc}$ với $a,b,c$ là số tự nhiên có 1 chữ số, $a>0$.
Theo bài ra ta có:
$\overline{cba}-\overline{abc}=792$
$(100c+10b+a)-(100a+10b+c)=792$
$99c-99a=792$
$99(c-a)=792$
$c-a=8$
$c=a+8> 0+8=8(1)$
Mặt khác:
$c=3b$
$\Rightarrow c\vdots 3(2)$
Từ $(1); (2)\Rightarrow c=9$.
$a=c-8=9-8=1$
$b=c:3=9:3=3$
Vậy số cần tìm là $139$
Ta có:
cba - abc = 792
=> (100c + 10b + a) - (100a + 10b + c) = 792
=> 100c + 10b + a - 100a - 10b - c = 792
=> 99c - 99a = 792
=> 99.(c - a) = 792
=> c - a = 792 : 99
=> c - a = 8
Do c là chữ số => c = 8; a = 0 hoặc c = 9; a = 1
Mà c = 3b => c chia hết cho 3 => c = 9; a = 1
=> b = 3
Vậy số cần tìm là 139
Gọi số ban đầu là (abc), số mới là (cba) (a,b,c là stn nhỏ hơn 10 và a # 0)
Hiệu của chúng là :
(100c+10b+a)-(100a+10b+c)=
=100c+a-100a-c=99(c-a)
Theo đề bài :
99(c-a)=792 =>c-a=8 =>a=1; c=9
c=9 =>b=9/3=3
Vậy số tự nhiên ban đầu là 139.
Gọi số cần tìm là 7ab = 700 +ab
Ta được số mới là ab7 = ab0 +7 =ab.10 +7 =10ab +7
Mà số mới nhỏ hơn số cũ 279 đơn vị nên ta có:
700 +ab = 10ab +7 +179 => 9ab = 414 => ab =46
Vay so can tim la 746
gọi số tự nhiên đó là 7ab, số mới là ab7
7ab=ab7+279
7.100+ab=(ab.10+7)+279
(7.99+ab)-279=ab.10
414=ab.9
ab=414:9
ab=46
Goi so phai tim la abc
cba - abc = 99 (c -a) = 792
c -a = 8
Vi a lon hon 0 nen a= 1, c =9 ,b = 4
So pphai tim la 149
981