Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
okokokokokokok,okokokokokokokokokokokokokokokokokokokokokokokokokokok😁 😎
\(M=\frac{2.2^{12}.3^6+2^2.2^9.3^9}{2^5.2^7.3^7+2^7.2^3.3^{10}}\)
\(=\frac{2^{11}.3^6\left(2^2+3^3\right)}{2^{10}.3^7\left(2^2+3^3\right)}\)
\(=\frac{2}{3}\)
\(M=\frac{2.\left(2^3\right)^4.\left(3^3\right)^2+2^2.\left(2.3\right)^9}{2^5.\left(2.3\right)^7+2^7.2^3.\left(3^2\right)^5}\)
\(M=\frac{2.2^{12}.3^6+2^2.2^9.3^9}{2^5.2^7.3^7+2^7.2^3.3^{10}}\)
\(M=\frac{2^{13}.3^6+2^{11}.3^9}{2^{12}.3^7+2^{10}.3^{10}}\)
\(M=\frac{2^{11}.3^6\left(2^2.1+1.3^3\right)}{2^{10}.3^7\left(2^2.1+1.3^3\right)}\)
\(M=\frac{2.31}{3.31}\)
\(M=\frac{2}{3}\)
Study well
cả 2 lần bán được là :
1/4 + 2/5 = 13/20 ( số trứng )
vì số trứng còn lại là 21 quả => 21 quả = 7/20 ( số trứng )
số trứng có ban đầu là : 21 : 7/20 = 60 ( quả trứng )
lần thứ nhất bán được là : 60 x 1/4 = 15 ( quả )
lần thứ 2 bán được số trứng là : 60 x 2/5 = 24 ( quả )
đáp số : ...
Số cần tìm là :
1234567890+987654321= 2222222211
Đáp số : 2222222211
Chúc bạn hok tốt !
Lời giải:
a.
Vì $MC, MD$ là tiếp tuyến của $(O)$ nên $MC\perp OC, MD\perp OD$
$\Rightarrow \widehat{MCO}=\widehat{MDO}=90^0$
Tứ giác $MCOD$ có tổng 2 góc đối nhau $\widehat{MCO}+\widehat{MDO}=90^0+90^0=180^0$ nên $MCOD$ là tứ giác nội tiếp.
$\Rightarrow M,C,O,D$ cùng thuộc 1 đường tròn (1)
Mặt khác:
$K$ là trung điểm $AB$ nên $OK\perp AB$.
$\Rightarrow \widehat{MKO}=90^0$
Tứ giác $MCKO$ có $\widehat{MCO}=\widehat{MKO}=90^0$ và cùng nhìn cạnh $MO$ nên $MCKO$ là tứ giác nội tiếp.
$\Rightarrow M,C,K,O$ cùng thuộc 1 đường tròn (2)
Từ $(1); (2)\Rightarrow M,C,K,O,D$ cùng thuộc 1 đường tròn.
$\Rightarrow MCKD$ là tứ giác nội tiếp.
b.
Xét tam giác $MCA$ và $MBC$ có:
$\widehat{M}$ chung
$\widehat{MCA}=\widehat{MBC}$ (góc tạo bởi tt và dây cung bằng góc nt chắn cung đó)
$\Rightarrow \triangle MCA\sim \triangle MBC$ (g.g)
$\Rightarrow \frac{MC}{MA}=\frac{MB}{MC}\Rightarrow MC^2=MA.MB(3)$
Mặt khác:
Xét tam giác $MCN$ và $MKC$ có:
$\widehat{M}$ chung
$\widehat{MCN}=\widehat{MCD}=\frac{1}{2}\text{sđc(CD)}=\frac{1}{2}\widehat{COD}=\widehat{COM}=\widehat{MKC}$ (do $MCKO$ là tgnt)
$\Rightarrow \triangle MCN\sim \triangle MKC$ (g.g)
$\Rightarrow \frac{MC}{MK}=\frac{MN}{MC}$
$\Rightarrow MC^2=MK.MN(4)$
Từ $(3); (4)\Rightarrow MA.MB=MK.MN$
Hình vẽ: