K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5

mấy trừ mấy cơ ạ

29 tháng 5

Đổi ra phân số nhé

BT1: CMR: a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\) c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\) d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\) e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\) f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\) BT2: Tính tổng a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\) b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\) BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\) CMR: 1 < S <...
Đọc tiếp

BT1: CMR:

a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)

c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)

e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)

BT2: Tính tổng

a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)

BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

CMR: 1 < S < 2

1
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

26 tháng 2 2018

bài này đúng là thị của phi...vô của lí ... :))

19 tháng 11 2017

8,A=\(\dfrac{9}{10}-\left(\dfrac{1}{10\times9}+\dfrac{1}{9\times8}+\dfrac{1}{8\times7}+...+\dfrac{1}{2\times1}\right)\)

=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{8}+...+\dfrac{1}{2}-1\right)\)

=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-1\right)\)

=\(\dfrac{9}{10}-\dfrac{\left(-9\right)}{10}\)

=\(\dfrac{9}{5}\)

hihahihahiha

28 tháng 2 2018

bay bị chập p

23 tháng 8 2023

Trả lời cho bạn đỗ manh tiến

11 tháng 9 2023

\(a,1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{2}}}\\ =1+\dfrac{1}{1+\dfrac{1}{\dfrac{3}{2}}}\\ =1+\dfrac{1}{1+\dfrac{2}{3}}\\ =1+\dfrac{1}{\dfrac{5}{3}}\\ =1+\dfrac{3}{5}\\ =\dfrac{8}{5}\)

\(b,1-\dfrac{1}{1-\dfrac{1}{1-\dfrac{1}{9}}}\\ =1-\dfrac{1}{1-\dfrac{1}{\dfrac{8}{9}}}\\ =1-\dfrac{1}{1-\dfrac{9}{8}}\\ =1-\dfrac{1}{-\dfrac{1}{8}}\\=1-\left(-8\right)\\ =9\)

\(c,-3+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{1+\dfrac{1}{3}}}}\\ =-3+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{\dfrac{4}{3}}}}\\ =-3+\dfrac{1}{1+\dfrac{1}{3+\dfrac{3}{4}}}\\ =-3+\dfrac{1}{1+\dfrac{1}{\dfrac{15}{4}}}\\ =-3+\dfrac{1}{1+\dfrac{4}{15}}\\ =-3+\dfrac{1}{\dfrac{19}{15}}\\ =-3+\dfrac{15}{19}\\ =-\dfrac{57}{19}+\dfrac{15}{19}\\ =-\dfrac{42}{19}\)

c: Ta có: \(\dfrac{1}{3}-\dfrac{7}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow x\cdot\dfrac{7}{8}=\dfrac{1}{12}\)

\(\Leftrightarrow x=\dfrac{1}{12}\cdot\dfrac{8}{7}=\dfrac{2}{21}\)

d: Ta có: \(\dfrac{3}{2}x+\dfrac{1}{7}=\dfrac{7}{8}\cdot\dfrac{64}{49}\)

\(\Leftrightarrow x\cdot\dfrac{3}{2}=1\)

hay \(x=\dfrac{2}{3}\)

10 tháng 9 2021

\(=\dfrac{3^5}{3}+\dfrac{3^5}{3^2}+\dfrac{3^5}{3^3}+\dfrac{3^5}{3^4}+\dfrac{3^9}{3^5}+\dfrac{3^9}{3^6}+\dfrac{3^9}{3^7}+\dfrac{3^9}{3^8}\\ =2\left(3^4+3^3+3^2+3\right)\)

10 tháng 9 2021

\(=\left(\dfrac{3^5}{3}+\dfrac{3^5}{3^2}+\dfrac{3^5}{3^3}+\dfrac{3^5}{3^4}\right)+\left(\dfrac{3^9}{3^5}+\dfrac{3^9}{3^6}+\dfrac{3^9}{3^5}+\dfrac{3^9}{3^8}\right)\)

\(=\left(3^4+3^3+3^2+3\right)+\left(3^4+3^3+3^2+3\right)\)

\(=2\left(3^4+3^3+3^2+3\right)\)

\(=2\left(81+27+9+3\right)\)

\(=2\left(120\right)\)

\(=240\)