\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\) rút gọn biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý
Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)
1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)
\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)
\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)
\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)
\(=-8\sqrt{3}\)
2) \(A=\sqrt{12-4x}\) có nghĩa khi:
\(12-4x\ge0\)
\(\Leftrightarrow4x\le12\)
\(\Leftrightarrow x\le\dfrac{12}{4}\)
\(\Leftrightarrow x\le3\)
3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)
\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)
Đặt \(D=\sqrt{2x+\sqrt{4x-1}}-\sqrt{2x-\sqrt{4x-1}}\) (D >/ 0 với mọi 1/2 < x)
\(\Rightarrow D^2=2\sqrt{4x-1}-2\sqrt{4x^2-4x+1}=2\sqrt{4x-1}-2\left|2x-1\right|=2\sqrt{4x-1}-2\left(1-2x\right)=4x-2+2\sqrt{4x-1}\)
\(\Rightarrow D=\sqrt{D^2}=\sqrt{4x-2+2\sqrt{4x-1}}=\left|\sqrt{4x-1}+1\right|=\sqrt{4x-1}+1\)
\(=\sqrt{4x-1-2\sqrt{4x-1}+1}+\sqrt{4x-1+2\sqrt{4x-1}+1}\)
\(=\sqrt{\left(\sqrt{4x-1}-1\right)^2}+\sqrt{\left(\sqrt{4x-1}+1\right)^2}\)
\(=\left|\sqrt{4x-1}-1\right|+\sqrt{4x-1}+1\)
\(=\left[{}\begin{matrix}2\sqrt{4x-1}\text{ nếu }x\ge\dfrac{1}{2}\\2\text{ nếu }\dfrac{1}{4}\le x< \dfrac{1}{2}\end{matrix}\right.\)
giải giúp mình bài này ới ạ mình đng cần gấp
Cho biểu thức
c=(căng x-2/căng x+2+căng x+2/căng x-2)nhân căng x+2/2 - 4 căng x/căng x-2
a)
\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{a-9}\)
\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}+\frac{\sqrt{a}\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{a-3\sqrt{a}+3+3\sqrt{a}-3a-9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{-2a-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{-2a-3}{a-9}\)
b) Để \(P=\frac{1}{3}\Rightarrow\frac{-2a-3}{a-9}=\frac{1}{3}\)
\(\Rightarrow3\left(-2a-3\right)=a-9\)
\(\Rightarrow-6a-9=a-9\)
\(\Rightarrow-6a-a=-9+9\)
\(\Rightarrow-7a=0\left(L\right)\)
Vậy ko có gt của a để P=1/3 ( mk ko chắc.....)
\(\frac{\sqrt{x^2}+\sqrt{4-4x+x^2+1}}{2x-1}\)
\(=\frac{x+2-2\sqrt{x}+1}{2x-1}\)
\(=1+\frac{4-2\sqrt{x}}{2x-1}\)
em lớp 8 chỉ làm được thế thôi
\(A=\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)
\(\Rightarrow A^2=2x+\sqrt{4x-1}+2x-\sqrt{4x-1}+2\sqrt{\left(2x+\sqrt{4x-1}\right)\left(2x-\sqrt{4x-1}\right)}\)
\(=4x+2\sqrt{4x^2-4x+1}\)
\(=4x+2\sqrt{\left(2x-1\right)^2}\)
\(\Leftrightarrow\orbr{\begin{cases}A^2=4x+4x-1\\A^2=4x-4x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}A^2=-1\left(loai\right)\\A^2=1\end{cases}}\)
\(\Leftrightarrow A=1\)( vì A>0 )
Vậy bt A =1