\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\) rút gọn biểu thức

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2021

\(A=\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)

\(\Rightarrow A^2=2x+\sqrt{4x-1}+2x-\sqrt{4x-1}+2\sqrt{\left(2x+\sqrt{4x-1}\right)\left(2x-\sqrt{4x-1}\right)}\)

\(=4x+2\sqrt{4x^2-4x+1}\)

\(=4x+2\sqrt{\left(2x-1\right)^2}\)

\(\Leftrightarrow\orbr{\begin{cases}A^2=4x+4x-1\\A^2=4x-4x+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}A^2=-1\left(loai\right)\\A^2=1\end{cases}}\)

\(\Leftrightarrow A=1\)( vì A>0 )

Vậy bt A =1 

11 tháng 7 2018

Đặt \(D=\sqrt{2x+\sqrt{4x-1}}-\sqrt{2x-\sqrt{4x-1}}\) (D >/ 0 với mọi 1/2 < x)

\(\Rightarrow D^2=2\sqrt{4x-1}-2\sqrt{4x^2-4x+1}=2\sqrt{4x-1}-2\left|2x-1\right|=2\sqrt{4x-1}-2\left(1-2x\right)=4x-2+2\sqrt{4x-1}\)

\(\Rightarrow D=\sqrt{D^2}=\sqrt{4x-2+2\sqrt{4x-1}}=\left|\sqrt{4x-1}+1\right|=\sqrt{4x-1}+1\)

13 tháng 7 2019

giải giúp mình bài này ới ạ mình đng cần gấp 

Cho biểu thức 

c=(căng x-2/căng x+2+căng x+2/căng x-2)nhân căng x+2/2 - 4 căng x/căng x-2

13 tháng 7 2019

a)

 \(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{a-9}\)

\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}+\frac{\sqrt{a}\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{a-3\sqrt{a}+3+3\sqrt{a}-3a-9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{-2a-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{-2a-3}{a-9}\)

b) Để \(P=\frac{1}{3}\Rightarrow\frac{-2a-3}{a-9}=\frac{1}{3}\)

\(\Rightarrow3\left(-2a-3\right)=a-9\)

\(\Rightarrow-6a-9=a-9\)

\(\Rightarrow-6a-a=-9+9\)

\(\Rightarrow-7a=0\left(L\right)\)

Vậy ko có gt của a để P=1/3 ( mk ko chắc.....)

27 tháng 5 2017

\(B=\sqrt{x+\sqrt{x^2-1}}-\sqrt{x-\sqrt{x^2-1}}\)

\(B^2=x+\sqrt{x^2-1}+x-\sqrt{x^2-1}-2\sqrt{\left(x+\sqrt{x^2-1}\right)\left(x-\sqrt{x^2-1}\right)}\)

\(B^2=2x-2\sqrt{x^2-x^2+1}\)

\(B^2=2x-2\)

\(\Rightarrow B=\sqrt{2x-2}\)

27 tháng 5 2017

\(C=\sqrt{x+2\sqrt{x-1}}-\sqrt{x-1}\left(ĐK:x\ge1\right)\)

\(C=\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{x-1}\)

\(C=\sqrt{x-1}+1-\sqrt{x-1}=1\)

10 tháng 10 2019

Câu 1: Sửa lạ đề chút nhé : 4x + 1  -> 4x -1 

 Đặt A = \(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)

=>  \(\sqrt{2}.A\)= ​\(\sqrt{4x-1+2\sqrt{4x-1}+1}+\sqrt{4x-1-2\sqrt{4x-1}+1}\)

\(\sqrt{\left(\sqrt{4x-1}+1\right)^2}+\sqrt{\left(\sqrt{4x-1}-1\right)^2}\)

\(\left|\sqrt{4x-1}+1\right|+\left|\sqrt{4x-1}-1\right|\)

Vì \(\frac{1}{4}< x< \frac{1}{2}\Rightarrow0< 4x-1< 1\Rightarrow0< \sqrt{4x-1}< 1\)

nên \(\sqrt{2}A=\)\(\sqrt{4x-1}+1+1-\sqrt{4x-1}\)=2

=> \(A=2:\sqrt{2}=\sqrt{2}\)

Câu 2. Có: \(9-4\sqrt{2}=8-2.2\sqrt{2}+1=\left(2\sqrt{2}-1\right)^2\)

=> \(\sqrt{9-4\sqrt{2}}=2\sqrt{2}-1\)

=> ​\(4+\sqrt{9-4\sqrt{2}}=4+2\sqrt{2}-1=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)

=> \(\sqrt{4+\sqrt{9-4\sqrt{2}}}=\sqrt{2}+1\)

=> \(53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}=53-20\left(\sqrt{2}+1\right)=33-2.10\sqrt{2}=5^2-2.5.2\sqrt{2}+8=\left(5-2\sqrt{2}\right)^2\)

=> \(\sqrt{53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}}=5-2\sqrt{2}\)

\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)

\(\frac{\sqrt{x^2}+\sqrt{4-4x+x^2+1}}{2x-1}\)

\(=\frac{x+2-2\sqrt{x}+1}{2x-1}\)

\(=1+\frac{4-2\sqrt{x}}{2x-1}\)

em lớp 8 chỉ làm được thế thôi