dùng định nghĩa để chứng minh bđt sau:
\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\le\dfrac{2}{1+ab}\) với a2+b2 < 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chuyển vế sang, xét \(\left(\dfrac{1}{1+ab}-\dfrac{1}{a^2+1}\right)+\left(\dfrac{1}{1+ab}-\dfrac{1}{b^2+1}\right)=\dfrac{a^2-ab}{\left(1+ab\right)\left(a^2+1\right)}+\dfrac{b^2-ab}{\left(1+ab\right)\left(b^2+1\right)}\)
\(=\dfrac{a-b}{1+ab}.\left(\dfrac{a}{a^2+1}-\dfrac{b}{b^2+1}\right)=\dfrac{\left(a-b\right)^2\left(1-ab\right)}{\left(1+ab\right)\left(a^2+1\right)\left(b^2+1\right)}\)
Dễ thấy (a - b)2 không âm, (a2 + 1) > 0, (b2 + 1) > 0
nên bđt trên phụ thuộc vào dấu của \(\dfrac{1-ab}{1+ab}\)
Đề bài sai, chiều của BĐT này ko phụ thuộc vào b mà phụ thuộc vào ab
Ví dụ: với \(b=\dfrac{1}{2};a=6\) (b thỏa mãn \(-1\le b\le1\)) thì \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}>\dfrac{2}{1+ab}\)
Nhưng với \(b=\dfrac{1}{2};a=1\) (vẫn thỏa mãn \(-1\le b\le1\) ) thì \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}< \dfrac{2}{1+ab}\)
Nếu có 2 số đồng thời bằng 0 BĐT tương đương \(0\le\dfrac{3}{4}\) hiển nhiên đúng
Nếu ko có 2 số nào đồng thời bằng 0:
\(VT=\dfrac{bc}{a^2+b^2+a^2+c^2}+\dfrac{ca}{a^2+b^2+b^2+c^2}+\dfrac{ab}{a^2+c^2+b^2+c^2}\)
\(VT\le\dfrac{bc}{2\sqrt{\left(a^2+b^2\right)\left(a^2+c^2\right)}}+\dfrac{ca}{2\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}}+\dfrac{ab}{2\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}}\)
\(VT\le\dfrac{1}{4}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{a^2+b^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{a^2+c^2}+\dfrac{b^2}{b^2+c^2}\right)=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(bc\le\dfrac{\left(b+c\right)^2}{4}\Rightarrow\dfrac{bc}{a^2+1}\le\dfrac{\left(b+c\right)^2}{4\left(a^2+1\right)}\) chứng minh tương tự với mấy cái còn lại ta dc \(\dfrac{bc}{a^2+1}+\dfrac{ac}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{a^2+1}+\dfrac{\left(a+c\right)^2}{b^2+1}+\dfrac{\left(a+b\right)^2}{c^2+1}\right]\) .Thay a^2 +b^2 +c^2 =1 vào vế phải ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\dfrac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right]\)
áp dụng bunhiacopski dạng phân thức ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{b^2+a^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{c^2+a^2}+\dfrac{b^2}{c^2+b^2}\right]\) \(VT\le\dfrac{1}{4}\left[\dfrac{a^2+b^2}{a^2+b^2}+\dfrac{c^2+a^2}{c^2+a^2}+\dfrac{c^2+b^2}{c^2+b^2}\right]\) \(\Rightarrow VT\le\dfrac{1}{4}\left(1+1+1\right)=\dfrac{3}{4}\left(đpcm\right)\)
a) Xét hiệu : VT - VP
= \(\dfrac{\left(a+b\right)^2}{4}\) _ ab = \(\dfrac{a^2+2ab+b^2}{4}\)- \(\dfrac{4ab}{4}\)
= \(\dfrac{a^2-2ab+b^2}{4}\) = \(\dfrac{\left(a-b\right)^2}{4}\)
Có : (a - b )2 \(\ge\) 0 => \(\dfrac{\left(a-b\right)^2}{4}\) \(\ge\) 0 .
(bất phương trình đúng ) .
=> VT - VP \(\ge\) 0 => ( \(\dfrac{a+b}{2}\))2 \(\ge\) ab .
b) Xét hiệu ; VP - VT
= \(\dfrac{a^2+b^2}{2}\)-(\(\dfrac{a+b}{2}\))2
= \(\dfrac{2a^2+2b^2-\left(a^2+2ab+b^2\right)}{4}\)
= \(\dfrac{\left(a-b\right)^2}{4}\) .
Có : (a-b)2 \(\ge\) 0 => \(\dfrac{\left(a-b\right)^2}{4}\) \(\ge\) 0 .
VP - VT \(\ge\) 0 .
Vậy ( \(\dfrac{a+b}{2}\) )2 \(\le\) \(\dfrac{a^2+b^2}{2}\) .
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
Ta chứng minh BĐT sau:
\(\dfrac{1}{x^3+x+2}\ge\dfrac{-x^2+3}{8}\) với \(x>0\)
Thật vậy, BĐT tương đương:
\(\left(x^2-3\right)\left(x^3+x+2\right)+8\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^3+2x^2+x+2\right)\ge0\) (luôn đúng)
Áp dụng:
\(\Rightarrow VT\ge\dfrac{-a^2+3}{8}+\dfrac{-b^2+3}{8}+\dfrac{-c^2+3}{8}=\dfrac{9-\left(a^2+b^2+c^2\right)}{8}=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Với mọi số thực ta luôn có:
`(a-b)^2>=0`
`<=>a^2-2ab+b^2>=0`
`<=>a^2+b^2>=2ab`
`<=>2(a^2+b^2)>=(a+b)^2=1`
`<=>a^2+b^2>=1/2(đpcm)`
Dấu "=' `<=>a=b=1/2`
ta có:
(a²+b²)(1²+1²)≥(a.1+b.1)²
⇔ 2(a²+b²) ≥ (a+b)²
⇔ 2(a²+b²)≥ 1 (vì a+b=1)
⇔ a² +b² ≥ 1/2 (đpcm)
dấu "=) xảy ra khi a = b = 1/2
Lời giải:
$a^2+b^2<2$
$\Leftrightarrow (a-b)^2+2ab<2$
$\Leftrightarrow ab< \frac{2-(a-b)^2}{2}\leq \frac{2}{2}=1$
BĐT cần chứng minh tương đương với:
$\frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\leq \frac{2}{1+ab}$
$\Leftrightarrow (a^2+b^2+2)(1+ab)\leq 2(a^2+1)(b^2+1)$
$\Leftrightarrow a^2+b^2+2+ab(a^2+b^2+2)\leq 2(a^2b^2+a^2+b^2+1)$
$\Leftrightarrow ab(a^2+b^2+2)\leq 2a^2b^2+a^2+b^2$
$\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\leq 0$
$\Leftrightarrow ab(a-b)^2-(a-b)^2\leq 0$
$\Leftrightarrow (a-b)^2(ab-1)\leq 0$ (luôn đúng với mọi $a,b\in\mathbb{R}$ và $ab<1$)
Do đó ta có đpcm.