m=3/1.4+3/4.7+3/2022.2025
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=-\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{61}-\dfrac{1}{64}\right)=-\dfrac{1}{63}\)
`#3107.101107`
1.
a)
`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`
`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`
`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`
`= 1/3* (1 - 1/103)`
`= 1/3*102/103`
`= 34/103`
b)
`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`
`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`
`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`
`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`
`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`
`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`
`= -1/2 * (1 - 1/101)`
`= -1/2*100/101`
`= -50/101`
2.
`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`
`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`
`= 1-1/100`
`= 99/100`
`3/1.4+3/4.7+3/7.10+...+3/94.97`
`=1/1-1/4+1/4-1/7+1/7-1/10+...+1/94-1/97`
`=1-1/97`
`=96/97`
\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\\ =1-\dfrac{1}{97}=\dfrac{96}{97}\)
\(A=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{61\cdot64}+\dfrac{3}{64\cdot67}\)
\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{61}-\dfrac{1}{64}+\dfrac{1}{64}-\dfrac{1}{67}\)
\(A=1-\dfrac{1}{67}\) < 1
=> A<1
Ta có:
\(A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{61.64}+\dfrac{3}{64.67}\)
\(=3.\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{61}-\dfrac{1}{64}+\dfrac{1}{64}-\dfrac{1}{67}\right)\)
\(=3.\left(1-\dfrac{1}{67}\right)\)
\(=3.\dfrac{66}{67}\)
\(=\dfrac{198}{67}\)
Vì \(\dfrac{198}{67}\) có tử lớn hơn mẫu nên \(\dfrac{198}{67}>1\)
Vậy \(A>1\)
\(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+\dfrac{3}{10\cdot13}+\dfrac{3}{13\cdot16}\)
\(=\dfrac{3\cdot1}{1\cdot4}+\dfrac{3\cdot1}{4\cdot7}+\dfrac{3\cdot1}{7\cdot10}+\dfrac{3\cdot1}{10\cdot13}+\dfrac{3\cdot3}{13\cdot16}\)
\(=3\cdot\left(\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+\dfrac{1}{10\cdot13}+\dfrac{1}{13\cdot16}\right)\)
\(=3\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}\right)\)
\(=3\cdot\left(1-\dfrac{1}{16}\right)\)
\(=3\cdot\left(\dfrac{16}{16}-\dfrac{1}{16}\right)\)
\(=3\cdot\dfrac{15}{16}\)
\(=\dfrac{45}{16}\)
dễ mà
Gọi tổng đó là S. Theo đề \(S=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{40.43}=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{40}-\frac{1}{43}\)
\(S=1-\frac{1}{43}=\frac{42}{43}\)
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)
Chúc bạn học tốt!
3/1.4+3/4.7+3/7.10+3/10.13
=1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13
=1 - 1/13
=12/13
Làm từng phần nha bạn
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{298\cdot301}+x=\frac{299}{301}\)
Đặt \(A+x=\frac{299}{301}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{298}-\frac{1}{301}\)
\(A=1-\frac{1}{301}\)
\(A=\frac{300}{301}\)
=> \(\frac{300}{301}+x=\frac{299}{301}\)
\(x=\frac{299-300}{301}\)
\(x=-\frac{1}{301}\)
\(A=5\cdot\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{301\cdot304}\right)\)
\(\frac{3A}{5}=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{301\cdot304}\)
\(\frac{3}{5}\cdot A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{301}-\frac{1}{304}\)
\(\frac{3}{5}\cdot A=1-\frac{1}{304}\)
\(\frac{3}{5}\cdot A=\frac{303}{304}\)
\(A=\frac{505}{304}\)
Sửa đề: \(M=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{2022\cdot2025}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2022}-\dfrac{1}{2025}\)
\(=1-\dfrac{1}{2025}=\dfrac{2024}{2025}\)