tìm cặp số nguyên x,y thoả mãn x^2 - x( y+5)=-4y -9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 - x(y+5)=-4y-9
=> x^2-xy-5x+4y+9=0
=>(x^2-xy)-4(x-y)-x+9=0
=>x(x-y)-4(x-y)-(x-4)+5=0
=>(x-4).(x-y-1)=-5
Vì x-4;x-y-1 thuộc Z =>x-4;x-y-1 thuộc ước của -5
=>....
\(\Leftrightarrow x^2-xy-5x+4y+9=0\)
\(\Leftrightarrow\left(x^2-xy\right)-\left(4x-4y\right)-x+9=0\)
\(\Leftrightarrow x\left(x-y\right)-4\left(x-y\right)-x+9=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-4\right)-\left(x-4\right)+5=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-y-1\right)=-5\)
Do \(x;y\in Z\Rightarrow\left(x-4\right);\left(x-y-1\right)\in Z\)
Ta có các trường hợp sau
+ TH1:
\(\left\{{}\begin{matrix}x-4=1\\x-y-1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=9\end{matrix}\right.\)
+ TH2:
\(\left\{{}\begin{matrix}x-4=-1\\x-y-1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)
+ TH3:
\(\left\{{}\begin{matrix}x-4=5\\x-y-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=9\end{matrix}\right.\)
+ TH4:
\(\left\{{}\begin{matrix}x-4=-5\\x-y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)
\(\Leftrightarrow x^3+y^3-x^2y-xy^2-6xy=0\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-xy\left(x+y+6\right)=0\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)
\(\Rightarrow a^3-3ab-b\left(a+6\right)=0\)
\(\Leftrightarrow a^3-2b\left(2a+3\right)=0\)
\(\Leftrightarrow8a^3+27-16b\left(2a+3\right)=27\)
\(\Leftrightarrow\left(2a+3\right)\left(4a^2-6a+9\right)-16b\left(2a+3\right)=27\)
\(\Leftrightarrow\left(2a+3\right)\left(4a^2-6a+9-16b\right)=27\)
Tới đây là pt ước số khá đơn giản, chắc em tự hoàn thành bài toán được.
\(x^3+xy-3x-y=5\)
\(\Leftrightarrow x^3-3x-5=y\left(1-x\right)\)
Với \(x=1\)không thỏa mãn.
Với \(x\ne1\):
\(y=\frac{x^3-3x-5}{1-x}=\frac{\left(x-1\right)\left(x^2+x-2\right)-7}{1-x}=-\left(x^2+x-2\right)+\frac{7}{x-1}\)
Để \(y\inℤ\)thì \(\frac{7}{x-1}\inℤ\Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow x\in\left\{-6,0,2,8\right\}\)
Ta có các bộ \(\left(x,y\right)\)thỏa mãn là: \(\left(-6,-29\right),\left(0,-5\right),\left(2,3\right),\left(8,-69\right)\).
\(\left(3x-5\right)⋮\left(x+2\right)\)
\(\Rightarrow3.\left(x+2\right)-11⋮\left(x+2\right)\)
Vì \(3.\left(x+2\right)⋮\left(x+2\right)\)
\(\Rightarrow11⋮\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự lập bảng :) T lười qá
Lời giải:
$3x^2+4y^2+12x+3y+5=0$
$\Leftrightarrow 3(x^2+4x+4)+4y^2+3y-7=0$
$\Leftrightarrow 3(x+2)^2+(2y+\frac{3}{4})^2-\frac{121}{16}=0$
$\Leftrightarrow 3(x+2)^2=\frac{121}{16}-(2y+\frac{3}{4})^2\leq \frac{121}{16}$
$\Rightarrow (x+2)^2\leq \frac{121}{48}< 4$
$\Rightarrow -2< x+2< 2$
$\Rightarrow -4< x< 0$
$\Rightarrow x\in \left\{-3; -2; -1\right\}$
Đê đây bạn thay giá trị $x$ vào pt ban đầu để tìm $y$ thôi.
\(xy-\left(x+2y\right)=3\)
\(xy-x-2y=3\)
\(y\left(x-2\right)-x=3\)
\(y\left(x-2\right)-x+2=3+2\)
\(y\left(x-2\right)-\left(x-2\right)=5\)
\(\left(y-1\right)\left(x-2\right)=5\)
Ta có bảng sau:
\(y-1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(x-2\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(y\) | \(2\) | \(6\) | \(0\) | \(-4\) |
\(x\) | \(7\) | \(3\) | \(-3\) | \(1\) |
Vậy các cặp \(\left(x;y\right)\) là \(\left(7;2\right);\left(3;6\right);\left(-3;0\right);\left(1;-4\right)\)
=>xy-x-2y=3
=>x(y-1)-2y+2=5
=>(x-2)(y-1)=5
=>\(\left(x-2;y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;6\right);\left(7;3\right);\left(1;-4\right);\left(-3;0\right)\right\}\)