Tính nhanh:
1/1x3 + 2/3x7 + 3/7x16 + 4/16x21 + 5/21x31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A = \(\dfrac{1}{1\times3}\) + \(\dfrac{1}{3\times5}\) + \(\dfrac{1}{5\times7}\) +...+ \(\dfrac{1}{2019\times2021}\)
A = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{2}{1\times3}\) + \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\)+...+ \(\dfrac{2}{2019\times2021}\))
A = \(\dfrac{1}{2}\) \(\times\)( \(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+...+ \(\dfrac{1}{2019}\) - \(\dfrac{1}{2021}\))
A = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{1}{1}\) - \(\dfrac{1}{2021}\))
A = \(\dfrac{1010}{2021}\)
a=\(1\times3+\dfrac{2}{3}\times7+\dfrac{3}{7}\times13+\dfrac{4}{13}\times21+\dfrac{5}{12}\times21\)
=3+\(\dfrac{14}{3}\)+\(\dfrac{39}{7}\)+\(\dfrac{84}{13}\)+5=8+\(\dfrac{215}{21}\)+\(\dfrac{84}{13}\)=\(\dfrac{4559}{273}\)+8=\(\dfrac{6743}{273}\)
\(\dfrac{1}{1.3}+\dfrac{1}{2.3}+\dfrac{1}{2.5}+\dfrac{1}{3.5}+\dfrac{1}{3.7}+\dfrac{1}{4.7}+\dfrac{1}{4.9}\)
\(=\dfrac{1}{1.3}+\dfrac{1}{3.2}+\dfrac{1}{2.5}+\dfrac{1}{5.3}+\dfrac{1}{3.7}+\dfrac{1}{7.4}+\dfrac{1}{4.9}\)
\(=\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\right):\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right):\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{9}\right):\dfrac{1}{2}\)
\(=\dfrac{7}{18}:\dfrac{1}{2}\)
\(=\dfrac{7}{9}\)
\(\frac{1}{1.3}+\frac{1}{3.2}+\frac{1}{2.5}+...+\frac{1}{99.100}\)
= \(2.\left(\frac{1}{1.3.2}+\frac{1}{3.2.2}+\frac{1}{2.5.2}+...+\frac{1}{99.50.2}\right)\)
= \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
= \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
= \(2.\left(\frac{1}{2}-\frac{1}{100}\right)\)
= \(2.\frac{49}{100}\)
= \(\frac{49}{50}\)
\(\frac{3}{2\times5}+\frac{2}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{602\times605}\)
\(=\frac{5-2}{2\times5}+\frac{8-5}{5\times8}+\frac{11-8}{8\times11}+...+\frac{605-602}{602\times605}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\)
\(=\frac{1}{2}-\frac{1}{605}=\frac{603}{1210}\)
\(\frac{4}{3\times7}+\frac{5}{7\times12}+\frac{1}{12\times13}+\frac{2}{13\times15}\)
\(=\frac{7-4}{3\times7}+\frac{12-7}{7\times12}+\frac{13-12}{12\times13}+\frac{15-13}{13\times15}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{3}-\frac{1}{15}=\frac{4}{15}\)
mk chỉnh lại đề nhé, có lẽ bn ghi thiếu:
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}+\frac{5^2}{31.36}\)
\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}+\frac{5}{31.36}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}+\frac{1}{31}-\frac{1}{36}\right)\)
\(=5\left(1-\frac{1}{36}\right)=5.\frac{35}{36}=\frac{175}{36}\)
Đề đúng:
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}+\frac{5^2}{31.36}\)
\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+\frac{5}{26.31}+\frac{5}{31.36}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}+\frac{1}{31}-\frac{1}{36}\right)\)
\(=5\left(1-\frac{1}{36}\right)\)
\(=5\left(\frac{36}{36}-\frac{1}{36}\right)\)
\(=5.\frac{35}{36}\)
\(=\frac{175}{36}\)
\(\frac{5}{11x16}+\frac{5}{16x21}+...+\frac{5}{61x66}\)
\(=\frac{5}{11}-\frac{5}{16}+\frac{5}{16}-\frac{5}{21}+...+\frac{5}{61}-\frac{5}{66}\)
\(=\frac{5}{11}-\frac{5}{66}+0+...+0\)
\(=\frac{25}{66}\)
~ Ủng hộ nhé anh chị em ~
\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}+\left(\frac{1}{16}-\frac{1}{16}\right)+...+\left(\frac{1}{61}-\frac{1}{61}\right)-\frac{1}{21}\)
\(=\frac{1}{11}-\frac{1}{21}\)
\(=\frac{21}{231}-\frac{11}{231}\)
\(=\frac{10}{231}\)
Sửa đề: \(\dfrac{1}{1\times3}+\dfrac{2}{3\times7}+\dfrac{3}{7\times13}+\dfrac{4}{13\times21}+\dfrac{5}{21\times31}\)
\(=\dfrac{1}{2}\times\left(\dfrac{2}{1\times3}+\dfrac{4}{3\times7}+\dfrac{6}{7\times13}+\dfrac{8}{13\times21}+\dfrac{10}{21\times31}\right)\)
\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{31}\right)\)
\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{31}\right)=\dfrac{1}{2}\times\dfrac{30}{31}=\dfrac{15}{31}\)