K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=1-4+4^2-4^3+...+4^{98}-4^{99}+4^{100}\)

=>\(4A=4-4^2+4^3-4^4+...+4^{99}-4^{100}+4^{101}\)

=>\(4A+A=4-4^2+4^3-...+4^{99}-4^{100}+4^{101}+1-4+4^2-...+4^{98}-4^{99}+4^{100}\)

=>\(5A=4^{101}+1\)

=>\(A=\dfrac{4^{101}+1}{5}\)

2 tháng 7 2017

\( A= 3 ( 4^2+1).(4^4+1).(4^8+1) - ( 4^{16}+1) - \frac{4^{32}}{5}\)

31 tháng 12 2019

Câu hỏi của Kurosaki Akatsu - Toán lớp 8 - Học toán với OnlineMath

6 tháng 10 2023

Ta có công thức tổng quát như sau:

\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)

Áp dụng ta có:

\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\) 

\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)

______

\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)

\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)

_____

\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)

\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)